|
- 2017
基于近似熵快速算法的静息态脑磁信号分析
|
Abstract:
为了探究静息态精神分裂症患者脑磁信号的非线性动力学特性,提出了一种将小波变换和近似熵相结合的特征提取方法.该方法首先通过小波变换,将10个正常人和10个精神分裂症患者的脑磁信号进行6层小波分解,提取对应于脑磁信号θ波段和α波段的小波系数,继而计算和比较两类人近似熵的分布情况.实验结果表明,相同情况下精神分裂症患者MEG信号的各脑区和各通道间的近似熵都普遍高于正常人,α波段的额叶和中央区域尤为突出.该结果为进一步研究患者MEG信号特征进而建立相应的分类诊断模型提供了思路.