全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

非线性二阶周期边值问题正解的全局结构
Global structure of positive solutions for a nonlinear second order periodic boundary value problem

Keywords: 周期边值问题 ~正解全局结构 ~多解性 ~分歧理论
Pperiodic boundary value problem Gglobal structure of positive solution Multiplicity Bifurcation theory

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文获得了二阶周期边值问题 $$ \left\{\begin{array}{ll} u''-k^{2}u+\lambda a(t)f(u)=0,~~t\in[0,2\pi],\\[2ex] u(0)=u(2\pi),~u'(0)=u'(2\pi). \end{array} \right. $$ 正解的全局结构,~其中~$k>0$~为常数,~$\lambda$~是正参数,~$a\in C([0,2\pi],[0,\infty))$~且在~$[0,2\pi]$~的任何子区间内~$a(t)\not\equiv 0$,~$f\in C([0,\infty),[0,\infty))$.~主要结论的证明基于~Rabinowitz~全局分歧理论和逼近的方法.
In this paper,~we study the global structure of positive solution for second-order periodic boundary value problem $$ \left\{\begin{array}{ll} u''-k^{2}u+\lambda a(t)f(u)=0,~~t\in[0,2\pi],\\[2ex] u(0)=u(2\pi),~u'(0)=u'(2\pi). \end{array} \right. $$ where~$k>0$~is a constant,~$\lambda$~is positive parameter,~$a\in C([0,2\pi],[0,\infty))$~and~$a(t)\not\equiv 0$~on any subinterval of~$[0,2\pi]$,~$f\in C([0,\infty),~[0,\infty))$.~The proof of the main results is based on the Rabinowitz global bifurcation theorems and a approach by approximation

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133