%0 Journal Article %T 非线性二阶周期边值问题正解的全局结构<br>Global structure of positive solutions for a nonlinear second order periodic boundary value problem %A 叶芙梅 %J 四川大学学报 (自然科学版) %D 2018 %X 本文获得了二阶周期边值问题 $$ \left\{\begin{array}{ll} u''-k^{2}u+\lambda a(t)f(u)=0,~~t\in[0,2\pi],\\[2ex] u(0)=u(2\pi),~u'(0)=u'(2\pi). \end{array} \right. $$ 正解的全局结构,~其中~$k>0$~为常数,~$\lambda$~是正参数,~$a\in C([0,2\pi],[0,\infty))$~且在~$[0,2\pi]$~的任何子区间内~$a(t)\not\equiv 0$,~$f\in C([0,\infty),[0,\infty))$.~主要结论的证明基于~Rabinowitz~全局分歧理论和逼近的方法.<br>In this paper,~we study the global structure of positive solution for second-order periodic boundary value problem $$ \left\{\begin{array}{ll} u''-k^{2}u+\lambda a(t)f(u)=0,~~t\in[0,2\pi],\\[2ex] u(0)=u(2\pi),~u'(0)=u'(2\pi). \end{array} \right. $$ where~$k>0$~is a constant,~$\lambda$~is positive parameter,~$a\in C([0,2\pi],[0,\infty))$~and~$a(t)\not\equiv 0$~on any subinterval of~$[0,2\pi]$,~$f\in C([0,\infty),~[0,\infty))$.~The proof of the main results is based on the Rabinowitz global bifurcation theorems and a approach by approximation %K 周期边值问题 ~正解全局结构 ~多解性 ~分歧理论< %K br> %K Pperiodic boundary value problem Gglobal structure of positive solution Multiplicity Bifurcation theory %U http://science.ijournals.cn/jsunature_cn/ch/reader/view_abstract.aspx?file_no=Z170485&flag=1