全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

矩阵方程AXB+CXTD=E自反最佳逼近解的迭代算法
AN ITERATIVE ALGORITHM FOR THE REFLEXIVE OPTIMAL APPROXIMATION SOLUTION OF MATRIX EQUATIONS AXB + CXTD=E

Keywords: Sylvester矩阵方程 Kronecker积 共轭方向法 最佳逼近解 自反矩阵
sylvester matrix equations Kronecker product conjugate direction method optimal approximation solution reflexive matrix

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究了Sylvester矩阵方程AXB+CXTD=E自反(或反自反)最佳逼近解.利用所提出的共轭方向法的迭代算法,获得了一个结果:不论矩阵方程AXB+CXTD=E是否相容,对于任给初始自反(或反自反)矩阵X1,在有限迭代步内,该算法都能够计算出该矩阵方程的自反(或反自反)最佳逼近解.最后,三个数值例子验证了该算法是有效性的.
In this paper, we study the optimal approximation solutin of the Sylvester matrix equations AXB + CXTD=E over reflexive (anti-reflexive) matrices. By using the proposed conjugate direction method, we get a result that whatever matrix equations AXB + CXTD=E are consistent or not, for arbitrary initial reflexive (anti-reflexive) matrix X1, the reflexive (anti-reflexive) optimal approximation solution can be obtained within finite iteration steps in the absence of round-off errors. The effectiveness of the proposed algorithm is verified by three numerical examples

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133