%0 Journal Article %T 矩阵方程AXB+CXTD=E自反最佳逼近解的迭代算法<br>AN ITERATIVE ALGORITHM FOR THE REFLEXIVE OPTIMAL APPROXIMATION SOLUTION OF MATRIX EQUATIONS AXB + CXTD=E %A 作者 %A 杨家稳 %A 孙合明 %J 数学杂志 %D 2015 %X 本文研究了Sylvester矩阵方程AXB+CXTD=E自反(或反自反)最佳逼近解.利用所提出的共轭方向法的迭代算法,获得了一个结果:不论矩阵方程AXB+CXTD=E是否相容,对于任给初始自反(或反自反)矩阵X1,在有限迭代步内,该算法都能够计算出该矩阵方程的自反(或反自反)最佳逼近解.最后,三个数值例子验证了该算法是有效性的.<br>In this paper, we study the optimal approximation solutin of the Sylvester matrix equations AXB + CXTD=E over reflexive (anti-reflexive) matrices. By using the proposed conjugate direction method, we get a result that whatever matrix equations AXB + CXTD=E are consistent or not, for arbitrary initial reflexive (anti-reflexive) matrix X1, the reflexive (anti-reflexive) optimal approximation solution can be obtained within finite iteration steps in the absence of round-off errors. The effectiveness of the proposed algorithm is verified by three numerical examples %K Sylvester矩阵方程 Kronecker积 共轭方向法 最佳逼近解 自反矩阵< %K br> %K sylvester matrix equations Kronecker product conjugate direction method optimal approximation solution reflexive matrix %U http://sxzz.whu.edu.cn/sxzz/ch/reader/view_abstract.aspx?file_no=20150530&flag=1