|
- 2018
麦比乌斯梯子C(2n,n)的强边色数
|
Abstract:
本文研究了麦比乌斯梯子C(2n,n)的强边染色问题.利用组合分析的方法,得到了如下结果:当n=3时,χ's(C(2n,n))=9;当n=4时,χ's(C(2n,n))=10;当n=5,8时,χ's(C(2n,n))=8;当n>3且n≡2(mod 4)时,χ's(C(2n,n))=6;当n>7且n≡0,1或3(mod 4)时,χ's(C(2n,n))=7.
In this paper, we study the problem of the strong edge-coloring of M?bius ladder C(2n,n). By using the combinatorial method, we obtain the following results: χ's(C(2n,n))=9 if n=3; χ's(C(2n,n))=10 if n=4; χ's(C(2n,n))=8 if n=5,8; χ's(C(2n,n))=6 if n>3 and n≡2(mod 4); χ's(C(2n,n))=7 if n>7 and n≡0,1 or 3 (mod 4)