%0 Journal Article %T 麦比乌斯梯子C(2n,n)的强边色数<br>THE STRONG CHROMATIC INDEX OF M?BIUS LADDER C(2n,n) %A 作者 %A 姚顺禹 %A 马登举 %J 数学杂志 %D 2018 %X 本文研究了麦比乌斯梯子C(2n,n)的强边染色问题.利用组合分析的方法,得到了如下结果:当n=3时,χ's(C(2n,n))=9;当n=4时,χ's(C(2n,n))=10;当n=5,8时,χ's(C(2n,n))=8;当n>3且n≡2(mod 4)时,χ's(C(2n,n))=6;当n>7且n≡0,1或3(mod 4)时,χ's(C(2n,n))=7.<br>In this paper, we study the problem of the strong edge-coloring of M?bius ladder C(2n,n). By using the combinatorial method, we obtain the following results: χ's(C(2n,n))=9 if n=3; χ's(C(2n,n))=10 if n=4; χ's(C(2n,n))=8 if n=5,8; χ's(C(2n,n))=6 if n>3 and n≡2(mod 4); χ's(C(2n,n))=7 if n>7 and n≡0,1 or 3 (mod 4) %K 强边染色 强边色数 麦比乌斯梯子< %K br> %K strong edge-colouring strong chromatic index M?bius ladder %U http://sxzz.whu.edu.cn/sxzz/ch/reader/view_abstract.aspx?file_no=20180313&flag=1