|
- 2015
可数对一映射及相关问题
|
Abstract:
本文研究了?0-sn-度量空间与度量空间之间的关系.利用特殊映射,获得了在序列空间中下述命题等价:(1)空间X是?0-sn-度量空间;(2)存在从度量空间M到X可数对一、序列商、σ映射f;(3)存在从度量空间M到X可数对一、序列商、σ映射f使得对每一个x ∈ X,?f-1(x)是σ-紧.推广了参考文献[3,4]中的一些结果.
In this paper,the connection between ?0-sn-metric spaces and metric spaces is discussed by special mapping.The following results are equivalent in a sequential space:(1)X is an ?0-sn-metric spaces;(2) There is a metric spaces M and countable to one、sequentially quotient、σ map f:M→X;(3) There is a metric spaces M and countable to one、sequentially quotient、σ map f:M→X such that ?f-1(x) is σ-compact for each x ∈ X.It is the generalization of references [3,4]