%0 Journal Article %T 可数对一映射及相关问题<br>COUNTABLE TO ONE MAPS AND RELATED MATTERS %A 作者 %A 王培 %J 数学杂志 %D 2015 %X 本文研究了?0-sn-度量空间与度量空间之间的关系.利用特殊映射,获得了在序列空间中下述命题等价:(1)空间X是?0-sn-度量空间;(2)存在从度量空间M到X可数对一、序列商、σ映射f;(3)存在从度量空间M到X可数对一、序列商、σ映射f使得对每一个x ∈ X,?f-1(x)是σ-紧.推广了参考文献[3,4]中的一些结果.<br>In this paper,the connection between ?0-sn-metric spaces and metric spaces is discussed by special mapping.The following results are equivalent in a sequential space:(1)X is an ?0-sn-metric spaces;(2) There is a metric spaces M and countable to one、sequentially quotient、σ map f:M→X;(3) There is a metric spaces M and countable to one、sequentially quotient、σ map f:M→X such that ?f-1(x) is σ-compact for each x ∈ X.It is the generalization of references [3,4] %K ?0-sn-度量空间 可数对一 序列商映射< %K br> %K ?0-sn-metric space countable to one sequentially quotient map %U http://sxzz.whu.edu.cn/sxzz/ch/reader/view_abstract.aspx?file_no=20150429&flag=1