|
- 2018
一类带Hardy-Sobolev临界指数的奇异Kirchhoff型方程正解的存在性
|
Abstract:
本文研究了一类带Hardy-Sobolev临界指数的奇异Kirchhoff型方程 ?-(a+b∫Ω|▽u|2dx) △u=(u5-2s)/(|x|s)+λu-γ,x ∈ Ω, ?u > 0,x∈Ω, ?u=0,x∈?Ω, 其中Ω?R3是一个有界开区域且具有光滑边界?Ω,0∈Ω,a,b ≥ 0且a+b > 0,λ > 0,0 < γ < 1,0 ≤ s < 1.利用变分方法,获得了该问题的一个正局部极小解,补充了文献[1]的结果.
The following singular Kirchhoff-type equations with critical Hardy-Sobolev exponent are considered, ?-(a+b∫Ω|▽u|2dx) △u=(u5-2s)/(|x|s)+λu-γ,x∈Ω, ?u > 0,x ∈Ω, ?u=0,x ∈?Ω, where Ω?R3 is an open bounded domain with smooth boundary ?Ω,0 ∈Ω,a,b ≥ 0 and a+b > 0,λ > 0,0 < γ < 1,0 ≤ s < 1. By the variational methods, the existence of positive local minimal solutions is obtained, which complements the result of[1]