%0 Journal Article %T 一类带Hardy-Sobolev临界指数的奇异Kirchhoff型方程正解的存在性<br>EXISTENCE OF POSITIVE SOLUTIONS FOR A CLASS OF SINGULAR KIRCHHOFF-TYPE EQUATIONS WITH CRITICAL HARDY-SOBOLEV EXPONENT %A 作者 %A 陈明 %A 张鹏 %A 廖家锋 %J 数学杂志 %D 2018 %X 本文研究了一类带Hardy-Sobolev临界指数的奇异Kirchhoff型方程 ?-(a+b∫Ω|▽u|2dx) △u=(u5-2s)/(|x|s)+λu-γ,x ∈ Ω, ?u > 0,x∈Ω, ?u=0,x∈?Ω, 其中Ω?R3是一个有界开区域且具有光滑边界?Ω,0∈Ω,a,b ≥ 0且a+b > 0,λ > 0,0 < γ < 1,0 ≤ s < 1.利用变分方法,获得了该问题的一个正局部极小解,补充了文献[1]的结果.<br>The following singular Kirchhoff-type equations with critical Hardy-Sobolev exponent are considered, ?-(a+b∫Ω|▽u|2dx) △u=(u5-2s)/(|x|s)+λu-γ,x∈Ω, ?u > 0,x ∈Ω, ?u=0,x ∈?Ω, where Ω?R3 is an open bounded domain with smooth boundary ?Ω,0 ∈Ω,a,b ≥ 0 and a+b > 0,λ > 0,0 < γ < 1,0 ≤ s < 1. By the variational methods, the existence of positive local minimal solutions is obtained, which complements the result of[1] %K Kirchhoff型方程 Hardy-Sobolev临界指数 奇异 变分方法< %K br> %K Kirchhoff-type equation critical Hardy-Sobolev exponent singularity variational method %U http://sxzz.whu.edu.cn/sxzz/ch/reader/view_abstract.aspx?file_no=20180513&flag=1