|
- 2018
|x|α的有理插值
|
Abstract:
本文研究了Newman-α型有理算子逼近|x|α(1 ≤ α < 2)收敛速度的问题,取插值结点组为X={xi=bi,b=m(-1)/√n}i=1n,其中e < m < n.利用基本不等式以及放缩法,获得了逼近阶为3e(-α√n)/(logm).
In this paper, we study the problem of the convergence rate of Newman-α rational operator approximation to|x|α(1 ≤ α < 2), and take the interpolation node group as X={xi=bi, b=m(-1)/√n}i=1n, where e < m < n. By using the basic inequality and the scaling method, we obtain that the approximation order is 3e(-α√n)/(logm)