%0 Journal Article %T |x|α的有理插值<br>ON RATIONAL INTERPOLATION TO |x|α %A 作者 %A 许江海 %A 赵易 %J 数学杂志 %D 2018 %X 本文研究了Newman-α型有理算子逼近|x|α(1 ≤ α < 2)收敛速度的问题,取插值结点组为X={xi=bi,b=m(-1)/√n}i=1n,其中e < m < n.利用基本不等式以及放缩法,获得了逼近阶为3e(-α√n)/(logm).<br>In this paper, we study the problem of the convergence rate of Newman-α rational operator approximation to|x|α(1 ≤ α < 2), and take the interpolation node group as X={xi=bi, b=m(-1)/√n}i=1n, where e < m < n. By using the basic inequality and the scaling method, we obtain that the approximation order is 3e(-α√n)/(logm) %K 有理插值 Newman-α型有理算子 逼近阶< %K br> %K rational interpolation Newman-α type rational operators order of approximation %U http://sxzz.whu.edu.cn/sxzz/ch/reader/view_abstract.aspx?file_no=20180412&flag=1