全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

虚二次环的商环的单位群
ON THE UNIT GROUPS OF THE QUOTIENT RINGS OF IMAGINARY QUADRATIC NUMBER RINGS

Keywords: 虚二次环 商环 单位群 二次扩域
imaginary quadratic number ring quotient ring unit group quadratic field

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究了有理数域Q的二次扩域Q (√d)的整数环Rd的商环的单位群.利用二项式分解以及有限交换群的结构性质,获得了d=-3,-7,-11,-19,-43,-67,-163时Rd/<?n>的单位群结构,其中?是Rd的素元,n是任意正整数.所得的结果推广了由J.T.Cross (1983),G.H.Tang与H.D.Su (2010)对d=-1,以及Y.J.Wei (2016)对d=-2时关于Rd/<?n>的单位群的研究.
In this paper, we investigate the unit groups of the quotient rings of the integer rings Rd of the quadratic fields Q(√d) over the rational number field Q. By employing the polynomial expansions and the theory of finite groups, we completely determine the unit groups of Rd/<?n> for d=-3, -7, -11, -19, -43, -67, -163, where ? is a prime in Rd, and n is an arbitrary positive integer. The results in this paper generalize the study of the unit groups of Rd/<?n> for d=-1, which obtained by J. T. Cross (1983), G. H. Tang and H. D. Su (2010) and for the case d=-2 by Y. J. Wei (2016)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133