%0 Journal Article %T 虚二次环的商环的单位群<br>ON THE UNIT GROUPS OF THE QUOTIENT RINGS OF IMAGINARY QUADRATIC NUMBER RINGS %A 作者 %A 韦扬江 %A 苏磊磊 %A 唐高华 %J 数学杂志 %D 2018 %X 本文研究了有理数域Q的二次扩域Q (√d)的整数环Rd的商环的单位群.利用二项式分解以及有限交换群的结构性质,获得了d=-3,-7,-11,-19,-43,-67,-163时Rd/<?n>的单位群结构,其中?是Rd的素元,n是任意正整数.所得的结果推广了由J.T.Cross (1983),G.H.Tang与H.D.Su (2010)对d=-1,以及Y.J.Wei (2016)对d=-2时关于Rd/<?n>的单位群的研究.<br>In this paper, we investigate the unit groups of the quotient rings of the integer rings Rd of the quadratic fields Q(√d) over the rational number field Q. By employing the polynomial expansions and the theory of finite groups, we completely determine the unit groups of Rd/<?n> for d=-3, -7, -11, -19, -43, -67, -163, where ? is a prime in Rd, and n is an arbitrary positive integer. The results in this paper generalize the study of the unit groups of Rd/<?n> for d=-1, which obtained by J. T. Cross (1983), G. H. Tang and H. D. Su (2010) and for the case d=-2 by Y. J. Wei (2016) %K 虚二次环 商环 单位群 二次扩域< %K br> %K imaginary quadratic number ring quotient ring unit group quadratic field %U http://sxzz.whu.edu.cn/sxzz/ch/reader/view_abstract.aspx?file_no=20180404&flag=1