|
- 2018
KdVKS方程的局部适定性
|
Abstract:
本文研究了KdVKS方程ut+δ?x3u+μ(?x4u+?x2u)+α(?xu)2=0的Cauchy问题.利用Tao的[k;Z]乘子范数估计的方法,在Sobolev空间Hs(R),s >-1中证明了初值问题的局部适定性,结论改进了现有的Biagioni等的结果.
In this paper, we consider the Cauchy problem for the KdVKS equation ut + δ?x3u + μ(?x4u +?x2u) + α(?xu)2=0. By means of the[k; Z] multiplier norm method of Tao, we prove the associated initial value problem is locally well-posed in Sobolev spaces Hs(R) for s > -1, which improves the conclusions drawn by Biagioni et al