%0 Journal Article %T KdVKS方程的局部适定性<br>ON THE LOCAL WELL-POSEDNESS FOR THE KDVKS EQUATION %A 作者 %A 王宏伟 %A 张媛媛 %J 数学杂志 %D 2018 %X 本文研究了KdVKS方程ut+δ?x3u+μ(?x4u+?x2u)+α(?xu)2=0的Cauchy问题.利用Tao的[k;Z]乘子范数估计的方法,在Sobolev空间Hs(R),s >-1中证明了初值问题的局部适定性,结论改进了现有的Biagioni等的结果.<br>In this paper, we consider the Cauchy problem for the KdVKS equation ut + δ?x3u + μ(?x4u +?x2u) + α(?xu)2=0. By means of the[k; Z] multiplier norm method of Tao, we prove the associated initial value problem is locally well-posed in Sobolev spaces Hs(R) for s > -1, which improves the conclusions drawn by Biagioni et al %K KdVKS方程 局部适定性 Cauchy问题< %K br> %K KdVKS equation local well-posedness Cauchy problem %U http://sxzz.whu.edu.cn/sxzz/ch/reader/view_abstract.aspx?file_no=20180406&flag=1