全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

基于PNN的变压器复合绝缘子套管憎水性检测 Detection of hydrophobicity of transformer composite insulator bushing based on PNN

Keywords: 变压器,套管,绝缘子,憎水性,PNN

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用计算机图像的方式对绝缘子表面进行实时监测,通过图像处理方法对复合绝缘子表面图像进行识别,然后通过智能算法对其憎水性等级进行划分来达到辅助运维的目的.在对复合绝缘子憎水图像进行预处理和识别的基础上,采用概率神经网络(Probabilistic Neural Network,PNN)对其憎水性等级进行判断,实验中经过210个样本训练后的PNN模型可以对140个预测样本准确判别变压器复合绝缘子套管的憎水等级,对后续高效可靠的在线监测变压器套管具有重要意义

References

[1]  张重远,闫康,汪佛池,杨升杰,李宁彩.基于图像特征提取与BP神经网络的绝缘子憎水性识别方法[J].高电压技术,2014,40(5):1446-1452.Zhang Zhongyuan,Yan Kang,Wang Fochi,et al.Insulator hydrophobic identification based on image feature extraction and BP neural network[J].High Voltage Engineering,2014,40(5):1446-1452.
[2]  刘泽洪.复合绝缘子使用现状及其在特高压输电线路中的应用前景[J].电网技术,2006,30(12):1-7.Liu Zehong.Present situation and prospects of applying composite insulators[J].Power System Technology,2006,30(12):1-7
[3]  申文伟,宋伟,王国利,等.复合绝缘子HTV硅橡胶材料老化特性的研究[J].高压电器,2013,49(2):1-3.Shen Wenwei,Song Wei,Wang Guoli,et al.Influence of corona discharge on aging characteristics of HTV silicone rubber material[J].High Voltage Apparatus,2013,49(2):1-3.
[4]  IEC 62073TS Ed.1.0.Guide to the Measurement of Wettability of Insulator Surfaces[S].
[5]  唐良瑞,赵春辉,祁兵.基于蚁群算法的绝缘子憎水性等级判别方法[J].高电压技术,2009,35(6):1323-1324.Tang Liangrui,Zhao Chunhui,Qi Bing.Hydrophobic detection based on ant colony algorithm[J].High Voltage Engineering,2009,35(6):1323-1324
[6]  白欢,胡建林,李剑,等.应用动态接触角评判复合绝缘子憎水性等级的研究[J].高电压技术,2010,36(12):3021-3023.Bai Huan,Hu Jianlin,Li Jian,et al.Hydrophobicity evaluation of composite insulators using the dynamic contact angle[J].High Voltage Engineering,2010,36(12):3021-3023.
[7]  汪佛池,闫康,张重远,等.采用图像分析与神经网络识别绝缘子憎水性[J].电机与控制学报,2014,18(11):78-83.Wang Fochi,Yan Kang,Zhang Zhongyuan,et al.Identifying insulator hydrophobicity by image analysis and neural network[J].Electric Machines and Control,2014,18(11):78-83.
[8]  贺含峰,陈洪波,白欢,等.复合绝缘子憎水性检测技术研究进展[J].四川电力技术,2013,36(2):63-68.He Hanfeng,Chen Hongbo,Bai Huan,et al.The research progress of hydrophobic composite insulator detecting technology[J].Journal of Sichuan Electricity,2013,36(2):63-68.
[9]  胡毅.送电线路绝缘子运行性能及分析[J].高电压技术,2001,27(2):33-35.Hu Yi.The running performance and analysis of transmission line insulator[J].High Voltage Engineering,2001,27(2):33-35.
[10]  Barsch R,Jahn H,Lambrecht J.Test methods for polymeric insulating materials for outdoor HV insulation[J].IEEE Transactions on Dielectrics and Electrical Insulation,1999,6(5):668-675.
[11]  宋伟,赵林杰,李成榕,等.复合绝缘子在线检测技术的发展[J].高电压技术,2005,3(5):28-30.Song Wei,Zhao Linjie,Li Chengrong,et al.On-line detection methods of composite insulator[J].High Voltage Engineering,2005,3(5):28-30.
[12]  Jaouher BenAli,Lotfi Saidi,AymenMouelhi,Brigitte Chebel-Morello,FarhatFnaiech.Linear feature selection and classification using PNN and SFAM neural networks for an early online diagnosis of bearing naturally progressing degradations[J].Engineering Applications of Artificial Intelligence,2015,42:67-81.
[13]  闫康,汪佛池,张重远.基于Canny算子的复合绝缘子憎水性图像边缘检测[J].电力科学与技术学报,2013,38(3):45-56.Yan Kang,Wang Fochi,Zhang Zhongyuan.Hydrophobic image edge detection for composite insulator based on Canny operator[J].Journal of Electric Power Science and Technology,2013,38(3):45-56.
[14]  李震球.基于概率神经网络的小电流接地系统模式识别故障选线方法及应用[D].南昌:南昌大学,2014.Li Zhenqiu.The pattern recognition method and application for grounding fault line selection in non-effectively grounded system based on probabilistic neural network[D].NanChang:Nanchang University,2014.
[15]  毛颖科,关志成,王黎明,等.基于BP人工神经网络的绝缘子泄漏电流预测[J].中国电机工程学报,2007,27(27):8-10.Mao Yingke,Guan Zhicheng,Wang Liming,et al.Prediction of leakage current of outdoor insulators based on BP artificial neural network[J].Proceedings of the CSEE,2007,27(27):8-10.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133