全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

具有Allee效应的毒杂草入侵扩散模型及空间分布模拟 The Space Distribution Simulation of Poisonous Weeds' Invasion Model with Allee Effect

Keywords: 入侵,Allee效应,持久性,空间分布

Full-Text   Cite this paper   Add to My Lib

Abstract:

以干旱、半干旱栖息地中的可食牧草与毒杂草为研究对象,在基于水资源竞争的毒杂草入侵扩散模型中引入Allee效应,建立具有Allee效应的水资源竞争毒杂草入侵扩散模型,并且对模型的持久性、全局渐近稳定性以及种群的空间分布情况进行对比分析.研究表明:1)Allee效应增加了可食牧草种群灭绝的风险而不利于可食牧草种群与毒杂草种群达到持久续存;2)Allee效应使得模型在其正平衡点达到全局渐近稳定更加困难;3)Allee效应影响了植物种群的空间分布格局,并且增加了种群空间分布的聚集程度

References

[1]  王勤龙,李百炼.生物入侵模型研究进展[J].科技导报,2011,29(10):71-79.WANG Q L,LI B N.Progress in modeling biological invasion[J].Science&Technology Review,2011,29(10):71-79(Ch).
[2]  王文婷,王万雄.捕食者具有厌食性反应且食饵具有Allee效应的捕食模型[J].生态学报,2014,34(16):4596-4602.WANG W T,WANG W X.The study for predatorprey system with Allee effect exist on prey and apositic reaction exist on predator[J].Acta Ecologica Sinica,2014,34(16):4596-4602(Ch).
[3]  王正军,李典谟,谢宝瑜.基于GIS和GS的棉铃虫卵空间分布与动态分析[J].昆虫学报,2004,47(1):33-40.WANG Z J,LI D M,XIE B Y.Analysis on spatial distribution and dynamics of Helicoverpa Armigera Eggs,based on GIS and GS[J].Acta Entomologica Sinica,2004,47(1):33-40(Ch).
[4]  石磊,刘华,蒋芮,等.基于水资源竞争的毒杂草入侵扩散模型稳定性分析[J].湖北民族学院(自然科学版),2016,34(4):365-370.SHI L,LIU H,JIANG R,et al.The stability analysis of poisonous weeds’invasion model based on the competition of water resources[J].Journal of Hubei University for Nationalities(Natural Science Edition),2016,34(4):365-370(Ch).
[5]  魏美华,常金勇,张巧卫.一类具有种内竞争率的竞争扩散模型稳态解的存在性和稳定性[J].数学的实践与认识,2014(15):295-301.WEI M H,CHANG J Y,ZHANG Q W.Existence and stability of steady states for a competition-diffusion model with intraspecific competition rates[J].Mathematics in Practice and Theory,2014(15):295-301(Ch).
[6]  刘华,金鑫,谢梅,等.外来植物物种入侵机理及其空间分布模拟[J].兰州大学学报(自然科学版),2016,52(3):375-379.LIU H,JIN X,XIE M,et al.Invasion mechanism and space distribution simulation of exotic plant species[J].Journal of Lanzhou University(Natural Sciences),2016,52(3):375-379(Ch).
[7]  XU R,CHAPLAIN M A J,DAVIDSON F A.Persistence and global stability of a ratio-dependent predator-prey model with stage structure[J].Applied Mathematics&Computation,2004,158(3):729-744.
[8]  付晓阅,张玉娟,刘超,等.具有Allee效应的食饵-捕食者模型的稳定性分析[J].生物数学学报,2012,27(4):639-644.FU X Y,ZHANG Y J,LIU C,et al.the stability of predator-prey system subject to the Allee effects[J].Journal of Biomathematics,2012,27(4):639-644(Ch).
[9]  WEI F,WANG K.Asymptotically periodic solution of N-species cooperation system with time delay[J].Nonlinear Analysis Real World Applications,2006,7(4):591-596.
[10]  BAUMONT C,ERTUR C,GALLO J.Spatial analysis of employment and population density:The case of the agglomeration of Dijon 1999[J].Geographical Analysis,2004,36:146-176.
[11]  王红,苏敏,潘峰,等.寄生对集团内捕食模型中物种入侵的影响[J].生态学报,2016,36(15):4809-4815.WANG H,SU M,PAN F,et al.Effects of parasitism on biological invasion in intraguild predation[J].Acta Ecologica Sinica,2016,36(15):4809-4815(Ch).
[12]  楼元.空间生态学中的一些反应扩散方程模型[J].中国科学:数学,2015,45(10):1619-1634.LOU Y.Some reaction diffusion models in spatial ecology[J].Scientia Sinica Mathematica,2015,45(10):1619-1634(Ch).
[13]  谢邦昌.生物空间分布分析常用的模型及拟合优度检验的几个问题[J].统计研究,2001,18(11):51-60.XIE B C.Several problem concerning the most frequently used models of the space distribution of living things and the test of fitness of model[J].Statistic Research,2001,18(11):51-60(Ch).
[14]  ZHANG X A,CHEN L.The linear and nonlinear diffusion of the competitive Lotka-Volterra model[J].Nonlinear Analysis,2007,66(12):2767-2776.
[15]  廖晓昕.稳定性的理论、方法和应用[M].第2版.武汉:华中科技大学出版社,2010.LIAO X X.Theory,Methods and Applications of Stability[M].2nd Ed.Wuhan:Huazhong University of Science and Technology Press,2010(Ch).
[16]  郭树江,杨自辉,王多泽,等.民勤绿洲-荒漠过渡带植物物种多样性及其优势种群空间分布格局研究[J].水土保持研究,2011,18(3):92-96.GUO S J,YANG Z H,WANG D Z,et al.Studies on species diversity and distribution pattern of dominant population in the transition zone between Minqin oasis and desert[J].Research of Soil and Water Conservation,2011,18(3):92-96(Ch).
[17]  徐彩琳.植物种内与种间竞争的计算机模拟实验研究[D].兰州:兰州大学,2000:24-27.XU C L.The Researches on the Computer Modeling Experiment of Plant Intraspecific and Interspecific Competition[D].Lanzhou:Lanzhou University,2000:24-27(Ch).
[18]  ALLEE W C.Animal Aggregations:A Study in General Sociology[M].Chicago:University of Chicago Press,1931.
[19]  刘华.宿主-寄生物相互作用种群模型的动态复杂性研究[D].兰州:兰州大学,2008:61-76.LIU H.Dynamical Complexity in Host-Parasitoid Interaction Model[D].Lanzhou:Lanzhou University,2008:61-76(Ch).
[20]  TAKEUCHI Y.Diffusion-mediated persistence in two-species competition Lotka-Volterra model[J].Mathematical Biosciences,1989,95(1):65-83.
[21]  CHEN F,LI Z,HUANG Y.Note on the permanence of a competitive system with infinite delay and feedback controls[J].Nonlinear Analysis Real World Applications,2007,8(2):680-687.
[22]  马知恩.种群生态学的数学建模与研究[M].合肥:安徽教育出版社,1996.MA Z E.Mathematical Modeling and Research of Population Ecology[M].Hefei:Anhui Education Press,1996(Ch).
[23]  刘华,金鑫,石磊,等.基于种间竞争模型的毒杂草入侵空间分布模拟研究[J].生态学报,2017,37(11):3765-3775.LIU H,JIN X,SHI L,et al.Spatial distribution of poisonous weed invasion based on inter-species competition models[J].Acta Ecologica Sinica,2017,37(11):3765-3775(Ch).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133