全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于金属有机框架的Cu-Cu_xO-C/rGO复合材料制备及其电容性能

Keywords: 铜氧化物,金属有机框架(MOFs),石墨烯,赝电容,超级电容器

Full-Text   Cite this paper   Add to My Lib

Abstract:

以Cu-MOF-199/氧化石墨烯(GO)为前驱体,经高温碳化得到一种铜氧化物均匀分布在碳骨架上的赝电容材料Cu-Cu_xO-C/rGO,采用热分析法、X射线衍射、扫描电镜等对材料的结构和形貌进行分析,采用循环伏安和恒电流充放电等方法测试材料的电化学性能.未掺杂GO的复合材料呈八面体构型,Cu和Cu_xO颗粒均匀分布在碳骨架上,随着GO引入量的增加,其形态的不规则程度增大.GO投料比例为10%、碳化温度为800℃时,材料的电容性能最佳,在电流密度为0.5 A·g~(-1)时比电容达620 F·g~(-1),1A·g~(-1)时达477 F·g~(-1)A·g~(-1)时仍有206 F·g~(-1)

References

[1]  LIU C,LI F,MA L P,et al.Advanced materials for energy storage[J].Advanced Materials,2010,22(8):E28-E62.DOI:10.1002/adma.200903328.
[2]  SIMON P,GOGOTSI Y,DUNN B.Where do batteries end and supercapacitors begin?[J].Science,2014,343(6176):1210-1211.DOI:10.1126/science.1249625.
[3]  WANG G C,YANG Z Y,LI X W,et al.Synthesis of poly(aniline-co-o-anisidine)-intercalated graphite oxide composite by delamination/reassembling method[J].Carbon,2005,43(12):2564-2570.DOI:10.1016/j.carbon.2005.05.008.
[4]  LUCENA F R S,DE ARAUJO L C C,RODRIGUES M D,et al.Induction of cancer cell death by apoptosis and slow release of 5-fluoracil from metal-organic frameworks Cu-BTC[J].Biomedicine&Pharmacotherapy,2013,67(8):707-713.DOI:10.1016/j.biopha.2013.06.003.
[5]  SUN H B,GU H Z,ZHANG L X,et al.Redox deposition of birnessite MnO_2,on ZIF-8 derived porous carbon at room temperature for supercapacitor electrodes[J].Materials Letters,2018,216:123-126.DOI:10.1016/j.matlet.2018.01.009.
[6]  LI Z S,CHE J H,LI B L,et al.Preparation of carbon nanospheres/Fe_3O_4,composites and their supercapacitor performances[J].Journal of Materials Science Materials in Electronics,2017,28(22):17388-17396.DOI:10.1007/s10854-017-7672-1.
[7]  LIU C G,YU Z N,NEFF D,et al.Graphene-based supercapacitor with an ultrahigh energy density[J].Nano Letters,2010,10(12):4863-4868.DOI:10.1021/n1102661q.
[8]  LI H,CHEN Z X,WANG Y,et al.Facile preparation of S-doped Cu/C core-shell composite for high-performance anode of pseudocapacitors[J].Electrochimica Acta,2018,259:1030-1036.DOI:10.1016/j.electacta.2017.11.013.
[9]  AUGUSTYN V,SIMON P,DUNN B.Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J].Energy&Environmental Science,2014,7(5):1597-1614.DOI:10.1039/c3ee44164d.
[10]  HU C C,CHEN W C,CHANG K H.How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors[J].Journal of the Electrochemical Society,2004,151(2):A281-A290.DOI:10.1149/1.1639020.
[11]  ZHANG W,YIN Z X,CHUN A,et al.Rose rockshaped nano Cu_2O anchored graphene for high-performance supercapacitors via solvothermal route[J].Journal of Power Sources,2016,318:66-75.DOI:10.1016/j.jpowsour.2016.04.006.
[12]  ANIA C O,SEREDYCH M,RODRIGUEZ-CASTELLON E,et al.New copper/GO based material as an efficient oxygen reduction catalyst in an alkaline medium:The role of unique C.u/rGO architecture[J].Applied Catalysis B Environmental,2015,163:424-435.DOI:10.1016/j.apcatb.2014.08.022.
[13]  GUNASEKARAN S S,ELUMALALI S K,KUMARESAN T K,et al Partially graphitic nanoporous activated carbon prepared from biomass for supercapacitor application[J].Materials Letters,2018,218:165-168.DOI:10.1016/j.matlet.2018.01.172.
[14]  RAMACHANDRAN R,XUAN W L,ZHAO C H,et al.Enhanced electrochemical properties of cerium metal-organic framework based composite electrodes for high-performance supercapacitor application[J].RSC Advances,2018,8(7):3462-3469.DOI:10.1039/c7ra12789h.
[15]  LIU J L,WANG J,XU C,et al.Advanced energy storage devices:Basic principles,analytical methods,and rational materials design[J].Advanced Science,2017,5(1):1700322.DOI:10.1002/advs.201700322.
[16]  MOWRY M,PALANIUK D,LUHRS C C.In situ Raman spectroscopy and thermal analysis of the formation of nitrogen-doped graphene from urea and graphite oxide[J].RSC Advances,2013,3(44):21763-21775.DOI:10.1039/c3ra42725k.
[17]  WANG L J,WANG X J,MENG Z H,et al.MOFtemplated thermolysis for porous CuO/Cu_2 O@CeO_2anode material of lithium-ion batteries with high rate performance[J].Journal of Materials Science,2017,52(12):7140-7148.DOI:10.1007/s10853-017-0949-1.
[18]  KHUSNUN N F,JALIL A A,TRIWAHYONO S,et al.Directing the amount of CNTs in CuO-CNT catalysts for enhanced adsorption-oriented visible-light-responsive photodegradation of p-chloroaniline[J].Powder Technology,2018,327:170-178.DOI:10.1016/j.powtec.2017.12.052.
[19]  CONG Y Q,GE Y H,ZHANG T T,et al.Fabrication of Z-scheme Fe_2O_3-MoS_2-Cu_2O ternary nanofilm with significantly enhanced photoelectrocatalytic performance[J].Industrial&Engineering Chemistry Research,2018,57:881-890.DOI:10.1021/acs.iecr.7b04089.
[20]  JIANG J,GUNASEKAR G H,PARK S,et al.Hierarchical Cu nanoparticle-aggregated cages with high catalytic activity for reduction of 4-nitrophenol and carbon dioxide[J].Materials Research Bulletin,2017,100:184-189.DOI:10.1016/j.materresbull.2017.12.018.
[21]  MINH T T,PHONG N H,DUC H V,et al.Microwave synthesis and voltammetric simultaneous determination of paracetamol and caffeine using an MOF-199-based electrode[J].Journal of Materials Science,2018,53(4):2453-2471.DOI:10.1007/s10853-017-1715-0.
[22]  HU X S,LI C,LOU X B,et al.Hierarchical CuO octahedra inherited from copper metal-organic frameworks:High-rate and high-capacity Lithium-ion storage materials stimulated by pseudocapacitance[J].Journal of Materials Chemistry A,2017,5(25):12828-12837.DOI:10.1039/c7ta02953e.
[23]  SIMON P,GOGOTSI Y.Capacitive energy storage in nanostructured carbon-electrolyte systems[J].Accounts of Chemical Research,2013,46(5):1094-1103.DOI:10.1021/ar200306b.
[24]  SARAF M,DAR R A,NATARAJAN K,et al.A binder-free hybrid of CuO-microspheres and rGO nanosheets as an alternative material for next generation energy storage application[J].Chemistry Select,2016,1(11):2826-2833.DOI:10.1002/slct.201600481.
[25]  TENG S A,SIEGEL G,PRESTGARD M C,et al.Synthesis and characterization of copper-infiltrated carbonized wood monoliths for supercapacitor electrodes[J].Electrochimica Acta,2015,161:343-350.DOI:10.1016/j.electacta.2015.02.117.
[26]  WANG Y G,SONG Y F,XIA Y Y.Electrochemical capacitors:Mechanism,materials,systems,characterization and applications[J].Chemical Society Reviews,2016,45(21):5925-5950.DOI:10.1039/c5cs00580a.
[27]  HU C C,CHANG K H,LIN M C,et al.Design and tailoring of the nanotubular arrayed architecture of hydrous RuO_2 for next generation supercapacitors[J].Nano Letters,2006,6(12):2690-2695.DOI:10.1021/n1061576a.
[28]  WANG K,DONG X M,ZHAO C J,et al.Facile synthesis of Cu_2O/CuO/RGO nanocomposite and its superior cyclability in supercapacitor[J].Electrochimica Acta,2015,152:433-442.DOI:10.1016/j.electacta.2014.11.171.
[29]  CHEN Q,LI X,MIN X M,et al.Determination of catechol and hydroquinone with high sensitivity using MOF-graphene composites modified electrode[J].Journal of Electroanalytical Chemistry,2017,789:114-122.DOI:10.1016/j.jelechem.2017.02.033.
[30]  PENDASHTEH A,MOUSAVI M F,RAHMANIFAR M S.Fabrication of anchored copper oxide nanoparticles on graphene oxide nanosheets via an electrostatic coprecipitation and its application as supercapacitor[J].Electrochimica Acta,2013,88(2):347-357.DOI:10.1016/j.electacta.2012.10.088.
[31]  LIU X,LIU F.Nanoflakes-assembled 3D flower-like nickel oxide/nickel composite as supercapacitor electrode materials[J].European Journal of Inorganic Chemistry,2018(8):987-991.DOI:10.1002/ejic.201701306.
[32]  SENTHILKUMAR V,KIM Y,CHANDRASEKARAN S,et al.Comparative supercapacitance performance of CuO nanostructures for energy storage device applications[J].RSC Advances,2015,5(26):20545-20553.DOI:10.1039/c5ra00035a.
[33]  VIDHYADHARAN B,MISNON I I,AZIZ R A,et al.Superior supercapacitive performance in electrospun copper oxide nanowire electrodes[J].Journal of Materials Chemistry A,2014,2(18):6578-6588.DOI:10.1039/c3ta15304e.
[34]  LI YJ,YE K,CHENG K,et al.Anchoring CuO nanoparticles on nitrogen-doped reduced graphene oxide nanosheets as electrode material for supercapacitors[J].Journal of Electroanalytical Chemistry,2014,727(8):154-162.DOI:10.1016/j.jelechem.2014.05.009.
[35]  ALLEN M J,TUNG V C,KANER R B.Honeycomb carbon:A review of graphene[J].Chemical Reviews,2010,110(1):132-145.DOI:10.1021/cr900070d.
[36]  JIN S L,GAO Q,ZENG X Y,et al.Effects of reduction methods on the structure and thermal conductivity of free-standing reduced graphene oxide films[J].Diamond&Related Materials,2015,58(5):54-61.DOI:10.1016/j.diamond.2015.06.005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133