全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

理性设计提高乙醇脱氢酶LbADH的催化活性 Improvement of Catalytic Activity of Alcohol Dehydrogenase LbADH by Rational Design

Keywords: 乙醇脱氢酶,分子模拟,酶活力,动力学,疏水作用,理性设计

Full-Text   Cite this paper   Add to My Lib

Abstract:

来源于革兰氏阳性短乳杆菌Lactobacillus brevis ATCC 367的乙醇脱氢酶LbADH是催化手性醇的模式酶,以四聚体的形式发挥催化活性.本研究通过计算机分子模拟进行理性设计,确定并设计LbADH中与单体间疏水相互作用及盐桥键形成相关的关键位点,通过定点突变在原始序列中引入相应的氨基酸,以改变单体间的结合能力,定向调节其催化活性和热稳定性.研究获得一个疏水突变体LbADH F146L,其在37℃下的酶活力为野生酶的8.5倍,在50℃下的酶活力为野生酶的5.6倍;其动力学参数Kcat/Km(1.99×106 L·mol-1·s-1)为野生酶(1.40×104 L·mol-1·s-1)的142倍,表明其催化效率明显提高.该研究结果表明,通过将LbADH中146位的苯丙氨酸(F146)突变为亮氨酸(L)增大疏水作用可以提高其催化活性

References

[1]  BRANNIGAN J A,WILKINSON A J.Protein engineering 20years on[J].Nature Reviews Molecular Cell Biology,2002,3(12):964-970.DOI:10.1038/nrm975.
[2]  王凡业,薛文漪.酶活性设计的新方法——半理性设计[J].应用化工,2006,35(8):634-636.WANG F Y,XUE W Y.Using a new approach to engineer enzyme activity—Semi-rational design[J].Applied Chemical Industry,2006,35(8):634-636(Ch).
[3]  SIEGEL J B,ZANGHELLINI A,LOVICK H M,et al.Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction[J].Science,2010,329(5989):309-313.DOI:10.1126/science.1190239.
[4]  JIANG L,ALTHOFF E A,CLEMENTE F R,et al.De novo computational design of retro-aldol enzymes[J].Science,2008,319(5868):1387-1391.DOI:10.1126/science.1152692.
[5]  HUMMEL W.Large-scale applications of NAD(P)-dependent oxidoreductases:Recent developments[J].Trends in Biotechnology,1999,17(12):487-492.DOI:10.1016/S0167-7799(98)01207-4.
[6]  KUNO A,SHIMIZU D,KANEKO S,et al.Significant enhancement in the binding of p-nitrophenyl-β-Dxylobioside by the E128H mutant F/10xylanase from Streptomyces olivaceoviridis E-86[J].FEBS Letters,1999,450(3):299-305.DOI:10.1016/S0014-5793(99)00498-6.
[7]  NIEFIND K,MLLER J,RIEBEL B,et al.The crystal structure of R-specific alcohol dehydrogenase fromLactobacillus brevis suggests the structural basis of its metal dependency[J].Journal of Molecular Biology,2003,327(2):317-328.DOI:10.1016/S0022-2836(03)00081-0.
[8]  DI GENNARO P,BERNASCONI S,ORSINI F,et al.Multienzymatic preparation of 3-[(1R)-1-hydroxyethyl]benzoic acid and(2S)-hydroxy(phenyl)ethanoic acid[J].Tetrahedron:Asymmetry,2010,21(15):1885-1889.DOI:10.1016/j.tetasy.2010.07.007.
[9]  LI B J,LI Y X,BAI D G,et al.Whole-cell biotransformation systems for reduction of prochiral carbonyl compounds to chiral alcohol in Escherichia coli[J].Scientific Reports,2014,4:6750-6754.DOI:10.1038/srep06750.
[10]  TRIVEDI A,HEINEMANN M,SPIESS A C,et al.Optimization of adsorptive immobilization of alcohol dehydrogenases[J].Journal of Bioscience and Bioengineering,2005,99(4):340-347.DOI:10.1263/jbb.99.340.
[11]  THOREY P,KNEZˇZ,HABULIN M.Alcohol dehydrogenase in non-aqueous media using high-pressure technologies:Reaction set-up and deactivation determination[J].Journal of Chemical Technology and Biotechnology,2010,85(7):1011-1016.DOI:10.1002/jctb.2411.
[12]  KULISHOVA L,DIMOULA K,JORDAN M,et al.Factors influencing the operational stability of NADpH-dependent alcohol dehydrogenase and an NADHdependent variant thereof in gas/solid reactors[J].Journal of Molecular Catalysis B:Enzymatic,2010,67(3):271-283.DOI:10.1016/j.molcatb.2010.09.005.
[13]  SCHLIEBEN N H,NIEFIND K,MLLER J,et al.Atomic resolution structures of R-specific alcohol dehydrogenase from Lactobacillus brevis provide the structural bases of its substrate and cosubstrate specificity[J].Journal of Molecular Biology,2005,349(4):801-813.DOI:10.1016/j.jmb.2005.04.029.
[14]  NAIK H G,YENIAD B,KONING C E,et al.Investigation of asymmetric alcohol dehydrogenase(ADH)reduction of acetophenone derivatives:Effect of charge density[J].Organic&Biomolecular Chemistry,2012,10(25):4961-4967.DOI:10.1039/C2OB06870B.
[15]  NAKAZAWA H,OKADA K,ONODERA T,et al.Directed evolution of endoglucanaseⅢ(Cel12A)from Trichoderma reesei[J].Applied Microbiology and Biotechnology,2009,83(4):649-657.DOI:10.1007/s00253-009-1901-3.
[16]  BORNSCHEUER U T,POHL M.Improved biocatalysts by directed evolution and rational protein design[J].Current Opinion in Chemical Biology,2001,5(2):137-143.DOI:10.1016/S1367-5931(00)00182-4.
[17]  RTHLISBERGER D,KHERSONSKY O,WOLLACOTT A M,et al.Kemp elimination catalysts by computational enzyme design[J].Nature,2008,453(7192):190-195.DOI:10.1038/nature06879.
[18]  赵炜,崔红晶,方炳雄,等.PCR重叠延伸法结合分段克隆技术构建高GC含量基因突变载体[J].海南医学院学报,2012,18(10):1349-1356.ZHAO W,CUI H J,FANG B X,et al.Mutate gene of high GC content with gene splicing by overlap extension and fragmentation cloning method[J].Journal of Hainan Medical University,2012,18(10):1349-1356(Ch).
[19]  MACHIELSEN R,LOOGER L L,RAEDTS J,et al.Cofactor engineering of Lactobacillus brevis alcohol dehydrogenase by computational design[J].Engineering in Life Sciences,2009,9(1):38-44.DOI:10.1002/elsc.200800046.
[20]  BRADFORD M M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J].Analytical Biochemistry,1976,72(1-2):248-254.DOI:10.1016/0003-2697(76)90527-3.
[21]  孙志浩,柳志强.酶的定向进化及其应用[J].生物加工过程,2005,3(3):7-13.SUN Z H,LIU Z Q.Methods and application of directed enzyme evolution[J].Chinese Journal of Bioprocess Engineering,2005,3(3):7-13(Ch).
[22]  LEUCHS S,NONNEN T,DECHAMBRE D,et al.Continuous biphasic enzymatic reduction of aliphatic ketones[J].Journal of Molecular Catalysis B:Enzymatic,2013,88:52-59.DOI:10.1016/j.molcatb.2012.09.017.
[23]  MLLER M A,BRUNIE L,BCHER A S,et al.Cytoplasmic salt bridge formation in integrinαvβ3stabilizes its inactive state affecting integrin-mediated cell biological effects[J].Cellular Signalling,2014,26(11):2493-2503.DOI:10.1016/j.cellsig.2014.07.013.
[24]  KIM M S,LEI X G.Enhancing thermostability of Escherichia coli phytase AppA2by error-prone PCR[J].Applied Microbiology and Biotechnology,2008,79(1):69-75.DOI:10.1007/s00253-008-1412-7.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133