|
- 2018
利用时序手机通话数据识别城市用地功能
|
Abstract:
城市土地利用是人的活动与城市物质空间交互所表现出的综合结果,因此人的活动与城市土地利用功能密切相关;具有不同时间段人的活动的空间聚集与分散规律的区域,其所属的社会功能属性亦不相同。随着大数据时代的到来,以居民手机数据为代表的基于位置的服务数据(local basic service,LBS)大量出现,使得实现时空全覆盖和精细化地监测城市人的活动成为可能。因此,利用手机数据的优势,能够实现从人的角度来区分识别城市用地功能类型。利用手机通话详单数据(call detail records,CDRs)提取面向地块尺度的居民通话聚合时序特征,提出了一种城市土地利用类型谱聚类识别方法。以武汉市为例进行实验分析,结果表明,该方法识别城市土地利用的平均精度为54.6%,为探知城市土地利用空间分布提供了一个有效的方法
[1] | Long Ying, Zhang Yu, Cui Chengyin. Identifying Commuting Pattern of Beijing Using Bus Smart Card Data[J]. <em>Acta Geographica Sinica</em>, 2012, 67(10):1339-1352(龙瀛, 张宇, 崔承印. 利用公交刷卡数据分析北京职住关系和通勤出行[J]. 地理学报, 2012, 67(10):1339-1352 |
[2] | Xu Zhongzhi, Qu Yingchun, Sun Li, et al. Urban Population Sensing via Mobile Phone Data[J]. <em>Journal of University of Electronic Science and Technology of China</em>, 2017, 46(1):126-132(徐仲之, 曲迎春, 孙黎,等. 基于手机数据的城市人口分布感知[J]. 电子科技大学学报, 2017, 46(1):126-132) |
[3] | Niu Xinyi, Ding Liang, Song Xiaodong, et al.Understanding Urban Spatial Structure of Shanghai Central City Based on Mobile Phone Data[J]. <em>Urban Planning Forum</em>,2014(6):61-67(钮心毅, 丁亮, 宋小冬,等. 基于手机数据识别上海中心城的城市空间结构[J]. 城市规划学刊, 2014(6):61-67) |
[4] | Liu Y, Liu X, Gao S, et al. Social Sensing:A New Approach to Understanding Our Socioeconomic Environments[J].<em>Annals of the Association of Ame-rican Geographers</em>, 2015, 105(3):512-530 |
[5] | Liu Y, Wang F, Xiao Y, et al. Urban Land Uses and Traffic Source-Sink Areas:Evidence from GPS-Enabled Taxi Data in Shanghai[J]. <em>Landscape & Urban Planning</em>, 2012, 106(1):73-87 |
[6] | Luxburg U. A Tutorial on Spectral Clustering[J]. <em>Statistics & Computing</em>, 2007, 17(4):395-416 |
[7] | Caliński T, Harabasz J. A Dendrite Method for Cluster Analysis[J]. <em>Communications in Statistics</em>, 1974, 3(1):1-27 |
[8] | Zhong Y, Zhu Q, Zhang L. Scene Classification Based on the Multifeature Fusion Probabilistic Topic Model for High Spatial Resolution Remote Sensing Imagery[J]. <em>IEEE Transactions on Geoscience & Remote Sensing</em>, 2015, 53(11):6207-6222 |
[9] | Zhong Y, Zhao B, Zhang L. Multiagent Object-Based Classifier for High Spatial Resolution Imagery[J]. <em>IEEE Transactions on Geoscience & Remote Sensing</em>, 2013, 52(2):841-857 |
[10] | Yao Y, Li X, Liu X, et al. Sensing Spatial Distribution of Urban Land Use by Integrating Points-of-Interest and Google Word2Vec Model[J]. <em>International Journal of Geographical Information Systems</em>, 2016, 31(4):825-848 |
[11] | Tu W, Cao J, Yue Y, et al. Coupling Mobile Phone and Social Media Data:A New Approach to Understanding Urban Functions and Diurnal Patterns[J]. <em>International Journal of Geographical Information Science</em>, 2017,31(12):2331-2358 |
[12] | Toole J L, Ulm M, Bauer D. Inferring Land Use from Mobile Phone Activity[C]. The ACM SIGKDD International Workshop on Urban Computing, Beijing, China,2012 |
[13] | González M C, Hidalgo C A, Barabási A L. Understanding Individual Human Mobility Patterns[J]. <em>Nature</em>, 2008, 453(7196):779-782 |
[14] | Shi J, Malik J. Normalized Cuts and Image Segmentation[J].<em>IEEE Transactions on Pattern Analysis & Machine Intelligence</em>, 2000, 22(8):888-905 |
[15] | Tao P,Sobolevsky S, Ratti C, et al. A New Insight into Land Use Classification Based on Aggregated Mobile Phone Data[J]. <em>International Journal of Geographical Information Science</em>, 2014, 28(9):1988-2007 |
[16] | Foody G M. Fully Fuzzy Supervised Classification of Land Cover from Remotely Sensed Imagery with an Artificial Neural Network[J]. <em>Neural Computing & Applications</em>, 1997, 5(4):238-247 |
[17] | Calabrese F, Ferrari L, Blondel V D. Urban Sen-sing Using Mobile Phone Network Data:A Survey of Research[J]. <em>ACM Computing Surveys (CSUR)</em>, 2015, 47(2):1-25 |
[18] | Louail T, Lenormand M, Cantu Ros O G, et al. From Mobile Phone Data to the Spatial Structure of Cities[J]. <em>Scientific Reports</em>, 2014,4:5276-5290 |
[19] | Steenbruggen J, Tranos E, Nijkamp P. Data from Mobile Phone Operators:A Tool for Smarter Cities?[J]. <em>Telecommunications Policy</em>, 2015, 39(3):335-346 |
[20] | Kuusik A, Ahas R, Tiru M. Analysing Repeat Visitation on Country Level with Passive Mobile Positioning Method:An Estonian Case Study[J]. <em>Discussions on Estonian Economic Policy</em>, 2009, 17:140-155 |
[21] | Song C, Qu Z,Blumm N, et al. Limits of Predictability in Human Mobility[J]. <em>Science</em>, 2010, 327(5968):1018-1021 |
[22] | Traag V A, Browet A, Calabrese F, et al. Social Event Detection in Massive Mobile Phone Data Using Probabilistic Location Inference[C].The Third International Conference on Privacy, Security, Risk and Trust,Boston,USA,2011 |