|
- 2016
火星探测巡航段自主导航方法研究
|
Abstract:
针对火星探测巡航段轨道导航需求,结合不同的星载敏感器提出了一种基于太阳、地球、火星及恒星信息的火星巡航段自主导航方法。该方法根据导航天体的特点,在分析不同导航天体观测模型基础上,根据地球视线矢量和火星视线矢量的可观性,结合信息融合技术,建立了基于太阳、地球、恒星观测以及太阳、火星、恒星观测两种模式下的多源天体数据融合处理方案,实现了探测器位置与速度信息的实时估计。仿真结果表明,本文方法能够有效地利用多源导航天体观测信息,为巡航轨道提供高精度的导航结果,可满足火星探测巡航段任务要求
[1] | Fang Jiancheng, Ning Xiaolin.Autonomous Deep- space Probe Celestial Navigation Method[D]. Xi' an: Northwestern Polytechnical University Press, 2010(房建成, 宁晓琳. 深空探测器自主天文导航方法[D]. 西安: 西北工业大学出版社, 2010) |
[2] | Hermann R, Krener A J. Nonlinear Controllability and Observability[J].<em>IEEE Trans Autom Control, </em>1977, 22(5): 728-740 |
[3] | Vershinin Y A , West M J. A New Data Fusion Algorithm Based on the Continuous-time Decentralized Kalman Filter[J]. <em>Target Tracking: Algorithms and Applications, IEEE, </em>2001, 16(1):1-6 |
[4] | Mastrodemos N, Kubitschek D G, Robert A, et al. Autonomous Navigation for the Deep Impact [C]. The AAS/AIAA Space Flight Mechanics Meeting, Tampa, Florida, 2006 |
[5] | Sheikh S I, Hanson J E, Collins J, et al. Deep Space Navigation Augmentation Using Variable Celestial X-ray Sources[C]. Institute of Navigation International Technical Meeting, Anaheim, 2009 |
[6] | Desai S, Han D, Bhaskaran S, et al. Autonomous Optical Navigation (AutoNav) Technology Validation Report [R]. Deep Space 1 Technology Validation Report, California, 2002 |
[7] | Yim J R, Crassidis J L,Junkins J L. Autonomous Orbit Navigation of Interplanetary Spacecraft[C]. AIAA/AAS Astrodynamics Specialist Conference, Denver, CO, 2000 |
[8] | Chang Xiaohua, Cui Pingyuan, Cui Hutao.Research on Autonomous Navigation Method of Deep Space Cruise Phase Based on the Sun Observation[J]. <em>Journal of Astronautics, </em>2010, 31(4):1 017-1 023 (常晓华, 崔平远, 崔祜涛.基于太阳观测的深空巡航段自主导航方法研究[J]. 宇航学报, 2010, 31(4):1 017-1 023) |
[9] | Wu Weiren, Ma Xin, Ning Xiaolin.Autonomous Navigation Method with High Accuracy for Cruise Phase of Mars Probe[J]. <em>Science China,</em> 2012, 42(8): 936-948 (吴伟仁,马辛, 宁晓琳. 火星探测器转移轨道的自主导航方法[J]. 中国科学, 2012, 42(8): 936-948) |
[10] | Cai Zhiwu, Zhao Dongming . Unscented Kalman Filter for Non-linear Estimation[J]. <em>Geomatics and Information Science of Wuhan University,</em> 2006, 31(2): 180-183(蔡志武, 赵东明. UKF滤波器性能分析及其在轨道计算中的仿真试验[J]. 武汉大学学报·信息科学版, 2006, 31(2):180-183) |