全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

一种基于共词网络的社交媒体数据主题挖掘方法
A New Social Media Topic Mining Method Based on Co-word Network

DOI: 10.13203/j.whugis20180225

Keywords: 共词网络,社交媒体,Louvain社区探测,主题挖掘,
co-word network
,social media,Louvain community detection,topic mining

Full-Text   Cite this paper   Add to My Lib

Abstract:

对社交媒体所包含文本数据的深入挖掘,有利于有效地进行后续的时空分析。提出了一种新的基于共词网络的社交媒体数据主题挖掘方法,依据词频-逆文档频率分析,自动筛选出与主题相关的关键词汇,基于微博间是否包含相同的关键词汇,提出构建以微博为节点的共词网络,并结合Louvain社区探测算法进行文本主题挖掘。所提出的方法是一种无监督方法,且具有不需要指定聚类数目的优点。实验表明,该方法在主题挖掘表现上,准确率和召回率均优于常用的文档主题生成模型。以收集的2012年北京暴雨期间包含关键词的微博为例,利用提出的方法对微博数据集进行挖掘和时空分析,结果表明所提方法在实际应用中的有效性

References

[1]  Achrekar H, Gandhe A, Lazarus R, et al. Predicting Flu Trends Using Twitter Data[C]. Computer Communications Workshops (INFOCOM WKSHPS) on 2011 IEEE Conference, Shanghai, China, 2011
[2]  Tumasjan A, Sprenger T O, Sandner P G, et al. Predicting Elections with Twitter:What 140 Cha-racters Reveal About Political Sentiment[J].Icwsm, 2010, 10(1):178-185
[3]  Ferrari L, Rosi A, Mamei M,et al. Extracting Urban Patterns from Location-Based Social Networks[C]. The 3rd ACM SIGSPATIAL International Workshop on Location-Based Social Networks, Chicago, Illinois, USA, 2011
[4]  Blondel V D, Guillaume J L, Lambiotte R, et al. Fast Unfolding of Communities in Large Networks[J]. Journal of Statistical Mechanics:Theory and Experiment,2008,DOI:10.1088/1742-5468/2008/10/P10008
[5]  Heinrich G. Parameter Estimation for Text Analysis[EB/OL].http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.74.6555&rep=rep1&type=pdf,2008
[6]  Bakillah M, Li R Y, Liang S H L. Geo-Located Community Detection in Twitter with Enhanced Fast-Greedy Optimization of Modularity:The Case Study of Typhoon Haiyan[J].International Journal of Geographical Information Systems, 2015, 29(2):258-279
[7]  Yates D, Paquette S. Emergency Knowledge Mana-gement and Social Media Technologies:A Case Study of the 2010 Haitian Earthquake[J].International Journal of Information Management, 2011, 31(1):6-13
[8]  Culotta A. Towards Detecting Influenza Epidemics by Analyzing Twitter Messages[C]. The First Workshop on Social Media Analytics, New York, USA, 2010
[9]  Huang Q, Xiao Y. Geographic Situational Awareness:Mining Tweets for Disaster Preparedness, Emergency Response, Impact, and Recovery[J].ISPRS International Journal of Geo-Information, 2015, 4(3):1549-1568
[10]  Wang Yandong, Li Hao, Wang Teng, et al. The Mining and Analysis of Emergency Information in Sudden Events Based on Social Media[J]. Geoma-tics and Information Science of Wuhan University, 2016, 41(3):290-297(王艳东, 李昊, 王腾, 等. 基于社交媒体的突发事件应急信息挖掘与分析[J]. 武汉大学学报·信息科学版, 2016, 41(3):290-297)
[11]  Duan Lian, Guo Wei, Zhu Xinyan, et al. Constructing Spatio-Temporal Topic Model for Microblog Topic Retrieving[J]. Geomatics and Information Science of Wuhan University, 2014, 39(2):210-213(段炼, 呙维, 朱欣焰,等. 基于时空主题模型的微博主题提取[J]. 武汉大学学报·信息科学版, 2014, 39(2):210-213)
[12]  Jiang B. Head/Tail Breaks:A New Classification Scheme for Data with a Heavy-Tailed Distribution[J]. The Professional Geographer, 2013, 65(3):482-494
[13]  Sampson G. Word Frequency Distributions[J].Computational Linguistics, 2002, 28(4):565-569
[14]  Caverlee J, Cheng Z, Sui D Z, et al. Towards Geo-Social Intelligence:Mining, Analyzing, and Leveraging Geospatial Footprints in Social Media[J]. IEEE Data Eng Bull, 2013, 36(3):33-41
[15]  Li L, Goodchild M F, Xu B. Spatial, Temporal, and Socioeconomic Patterns in the Use of Twitter and Flickr[J].Cartography and Geographic Information Science, 2013, 40(2):61-77
[16]  Nagel A C, Tsou M H, Spitzberg B H, et al. The Complex Relationship of Realspace Events and Messages in Cyberspace:Case Study of Influenza and Pertussis Using Tweets[J]. Journal of Medical Internet Research, 2013, 15(10):e237-1-e237-13
[17]  Sakaki T, Okazaki M, Matsuo Y. Earthquake Shakes Twitter Users:Real-Time Event Detection by Social Sensors[C]. The 19th International Conference on World Wide Web, New York, NY, USA, 2010
[18]  Liu Y, Sui Z, Kang C, et al. Uncovering Patternsof Inter-Urban Trip and Spatial Interaction from Social Media Check-In Data[J]. Plos One, 2014, 9(1):e86026
[19]  Salathé M, Khandelwal S. Assessing Vaccination Sentiments with Online Social Media:Implications for Infectious Disease Dynamics and Control[J]. Plos Computational Biology, 2011, 7(10):e1002199
[20]  Zhao W X, Jiang J, Weng J, et al. Comparing Twitter and Traditional Media Using Topic Models[C]. Advances in Information Retrieval, Berlin, Garmany, 2011
[21]  Kireyev K, Palen L, Anderson K. Applications of Topics Models to Analysis of Disaster-Related Twitter Data[C]. NIPS Workshop on Applications for Topic Models:Text and Beyond, Whistler, Canada, 2009
[22]  Cheng Qikai, Wang Xiaoguang. A New Research Frame for Analyzing the Evolution of Research Topics Based on Co-word Network Communities[J]. Library and Information Service, 2013, 57(8):91-96(程齐凯, 王晓光. 一种基于共词网络社区的科研主题演化分析框架[J]. 图书情报工作, 2013, 57(8):91-96)
[23]  Lu Yonghe, Li Yanfeng. Improvement of Text Feature Weighting Method Based on TF-IDF Algorithm[J]. Library and Information Service, 2013, 57(3):90-95(路永和, 李焰锋. 改进TF-IDF算法的文本特征项权值计算方法[J]. 图书情报工作, 2013, 57(3):90-95)
[24]  Sun Jisong, He Na, Wang Guorong, et al. Preliminary Analysis on Synoptic Configuration Evolvement and Mechanism of a Torrential Rain Occurring in Beijing on 21 July, 2012[J]. Torrential Rain and Disasters, 2012, 31(3):218-225(孙继松, 何娜, 王国荣,等. "7.21"北京大暴雨系统的结构演变特征及成因初探[J]. 暴雨灾害, 2012, 31(3):218-225)
[25]  Wang Yandong, Jing Tong, Jiang Wei, et al. Mo-deling Urban Air Quality Trend Surface Using Social Media Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(1):14-20(王艳东, 荆彤, 姜伟,等. 利用社交媒体数据模拟城市空气质量趋势面[J]. 武汉大学学报·信息科学版, 2017, 42(1):14-20)
[26]  Tsou M H, Yang J A, Lusher D, et al. Mapping Social Activities and Concepts with Social Media (Twitter) and Web Search Engines (Yahoo and Bing):A Case Study in 2012 US Presidential Election[J].Cartography and Geographic Information Science, 2013, 40(4):337-348

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133