|
- 2018
三维坐标转换的高斯-赫尔默特模型及其抗差解法
|
Abstract:
对三维坐标转换的高斯-赫尔默特(Gauss-Helmert,GH)模型,采用牛顿-高斯(Newton-Gauss)迭代算法构建了该模型的拉格朗日目标函数,推导了其解算方法,并给出了具体的计算步骤。在此基础上,考虑到可能出现的粗差对观测空间与结构空间的综合影响,基于标准化残差构造权因子函数,推导了该模型的抗差解法。仿真实验结果表明,GH模型用于三维坐标转换时不受旋转角度大小和其他附加条件限制,解算结果与现有算法一致,且估计参数的维数大大降低,计算效率有一定程度的提高;所提出的抗差解法效果良好,与现有基于整体最小二乘的三维坐标转换的抗差解法相比,表现出了更好的稳健性
[1] | Zeng Wenxian,Tao Benzao.Non-linear Adjustment Model of Three-Dimensional Coordinate Transformation[J].<em>Geomatics and Information Science of Wuhan University</em>,2003,28(5):566-568(曾文宪,陶本藻.三维坐标转换的非线性模型[J].武汉大学学报·信息科学版,2003,28(5):566-568) |
[2] | Golub H G,Vanloan F C.An Analysis of the Total Least Squares Problem[J].<em>SIAM Journal on Numerical Analysis</em>,1980,17(6):883-893 |
[3] | Shen Yunzhong,Li Bofeng,Chen Yi. An Iterative Solution of Weighted Total Least-Squares Adjustment[J]. <em>Journal of Geodesy</em>,2011,85(4):229-238 |
[4] | Xu Peiliang,Liu Jingnan.Variance Components in Errors-in-Variables Models:Estimability, Stability and Bias Analysis[J].<em>Journal of Geodesy</em>,2014,88(8):719-734 |
[5] | Wang Bin, Li Jiancheng,Gao Jingxiang,et al.Newton-Gauss Algorithm of Robust Weighted Total Least Squares Model[J].<em>Acta Geodaetica et Cartographica Sinica</em>,2015,44(6):602-608(王彬,李建成,高井祥,等.抗差加权整体最小二乘模型的牛顿-高斯算法[J].测绘学报,2015,44(6):602-608) |
[6] | Yang Yuanxi. Robust Estimation for Correlated Observations Based on Bifactor Equivalent Weights[J].<em>Journal of Geodesy</em>,2002,76(6):353-358 |
[7] | Lu Jue,Chen Yi,Zheng Bo. Total Least Squares to Three-Dimensional Datum Transformation[J].<em>Journal of Geodesy and Geodynamics</em>,2008,28(5):77-81(陆珏,陈义,郑波.总体最小二乘方法在三维坐标转换中的应用[J].大地测量学与地球动力学,2008,28(5):77-81) |
[8] | Chen Yi, Lu Jue. Peforming 3D Similarity Transformation by Robust Total Least Squares[J].<em>Acta Geodaetica et Cartographica Sinica</em>,2012,41(5):715-722(陈义,陆珏.以三维坐标转换为例解算稳健总体最小二乘方法[J].测绘学报,2012,41(5):715-722) |
[9] | Lu Jue, Chen Yi,Li Bofeng,et al.Robust Total Least Squares with Reweighting Iteration for Three-Dimensional Similarity Transformation[J].<em>Survey Review</em>,2014,46(334):28-36 |
[10] | Grafarend E W. Nonlinear Analysis of the Three-Dimensional Datum Transformation[J].<em>Journal of Geodesy</em>, 2003,77(1):66-76 |
[11] | Yao Yibin,Huang Chengmeng,Li Chengchun,et al.A New Algorithm for Solution of Transformation Parameters of Big Rotation Angle's 3D Coordinate[J].<em>Geomatics and Information Science of Wuhan University</em>,2012,37(3):253-256(姚宜斌,黄承猛,李程春,等.一种适用于大角度三维坐标转换参数求解算法[J].武汉大学学报·信息科学版,2012,37(3):253-256) |
[12] | Yang Yuanxi,Xu Tianhe.The Combined Method of Datum Transformation Between Different Coordinate Systems[J].<em>Geomatics and Information Science of Wuhan University</em>,2001,26(6):509-513(杨元喜,徐天河.不同坐标系综合变换法[J].武汉大学学报·信息科学版,2001,26(6):509-513) |
[13] | Liu Dajie,Shi Yimin,Guo Jingjun.The Theory and Data Processing of Global Positioning System (GPS)[M].Shanghai:Tongji University Press,1996(刘大杰,施一民,过静珺.全球定位系统(GPS)的原理与数据处理[M].上海:同济大学出版社,1996) |
[14] | Schaffrin B,Felus Y A.On the Multivariate Total Least-Squares Approach to Empirical Coordinate Transformations[J].<em>Journal of Geodesy</em>,2008,82(6):373-383 |
[15] | Felus F,Burtch R.On Symmetrical Three-Dimensional Datum Conversion[J]. <em>GPS Solutions</em>,2009,13(1):65-74 |
[16] | Neitzel F.Generalization of Total Least-Squares on Example of Unweighted and Weighted 2D Similarity Transformation[J].<em>Journal of Geodesy</em>,2010,84(12):751-762 |
[17] | Ou Jikun.A New Method to Detect Gross Errors:Quasi-Accurate Detection Method[J].<em>Chinese Science Bulletin</em>, 1999,44(16):1777-1781(欧吉坤.一种检测粗差的新方法——拟准测定法[J].科学通报,1999,44(16):1777-1781) |
[18] | Ou Jikun. Quasi-Accurate Detection of Gross Errors(QUAD)[J].<em>Acta Geodaetica et Cartographica Sinica</em>,1999,28(1):15-20(欧吉坤.粗差的拟准检定法(QUAD法)[J]. 测绘学报,1999,28(1):15-20) |
[19] | Zhou Jiangwen, Huang Youcai,Yang Yuanxi,et al.Robust Least Squares Method[M].Wuhan:Huazhong University of Science and Technology Press,1997(周江文,黄幼才,杨元喜,等.抗差估计最小二乘法[M].武汉:华中理工大学出版社,1997) |
[20] | Xu Peiliang,Liu Jingnan,Shi Chuang.Total Least Squares Adjustment in Partial Errors-in-Variables Models:Algorithm and Statistical Analysis[J].<em>Journal of Geodesy</em>,2012,86(8):661-675 |
[21] | Wei Erhu,Yin Zhixiang,Li Guangwen,et al.On 3D Coordinate Transformation with Virtual Observation Method[J].<em>Geomatics and Information Science of Wuhan University</em>,2014,39(2):152-156(魏二虎,殷志祥,李广文,等.虚拟观测值法在三维坐标转换中的应用研究[J].武汉大学学报·信息科学版,2014,39(2):152-156) |
[22] | Fang Xing,Zeng Wenxian,Liu Jingnan,et al.A General Total Least Squares Algorithm for Three-Dimensional Coordinate Transformations[J].<em>Acta Geodaetica et Cartographica Sinica</em>,2014,43(11):1139-1143(方兴,曾文宪,刘经南,等.三维坐标转换的通用整体最小二乘算法[J].测绘学报,2014,43(11):1139-1143) |
[23] | Fang Xing,Zeng Wenxian,Liu Jingnan,et al.Mixed LS-TLS Estimation Based on Nonlinear Gauss-Helmert Model[J].<em>Acta Geodaetica et Cartographi-ca Sinica</em>,2016,45(3):291-296(方兴,曾文宪,刘经南,等.基于非线性高斯-赫尔默特模型的混合整体最小二乘估计[J].测绘学报,2016,45(3):291-296) |
[24] | Chang Guobin.On Least-Squares Solution to 3D Similarity Transformation Problem Under Gauss-Helmert Model[J].<em>Journal of Geodesy</em>,2015,89(6):573-576 |
[25] | Yang Yuanxi.Robust Estimation of Geodetic Datum Transformation[J].<em>Journal of Geodesy</em>,1999,73(5):268-274 |
[26] | Mahboub V, Amirisimkooei A R,Sharifi M A.Ite-ratively Reweighted Total Least Squares:A Robust Estimation in Errors-in-Variables Models[J].<em>Survey Review</em>,2013,45(329):92-99 |
[27] | Gong Xunqiang, Li Zhilin.A Robust Weighted Total Least Squares Method[J].<em>Acta Geodaetica et Cartographica Sinica</em>,2014,43(9):888-894(龚循强,李志林.稳健加权总体最小二乘法[J].测绘学报,2014,43(9):888-894) |