全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于联邦滤波进行立体相机/IMU/里程计运动平台组合导航定位
Mobile Platform Localization by Integration of Stereo Cameras, IMU and Wheel Qdometer Based on Federated Filter

DOI: 10.13203/j.whugis20150286

Keywords: 联邦滤波,视觉测程,航迹推算,惯性测量单元,
federated filter
,visual odometry,dead-reckoning,IMU

Full-Text   Cite this paper   Add to My Lib

Abstract:

在无GPS信号的受限环境中,基于序列立体影像的运动平台视觉定位精度较高,能够改正航迹推算方法的误差累积,但在纹理贫乏或光照不足的环境下容易定位失败。为提高受限环境下运动平台定位的精度与稳健性,提出一种基于联邦滤波的立体相机、惯性测量单元(inertial measurement unit,IMU)及里程计组合导航方法。该方法在联邦滤波中利用IMU分别同里程计与立体相机构成子滤波器,有效避免立体视觉定位失效而导致的系统定位失败,提高了定位稳健性。地下巷道实验结果证明,所提方法能有效提高运动平台导航定位的精度,并且在立体视觉定位失效的情况下仍能实现连续定位

References

[1]  Corke P, Lobo J, Dias J. An Introduction to Inertial and Visual Sensing[J]. <em>International Journal of Robotics Research</em>, 2007, 26(6):519-535
[2]  Sünderhauf N, Konolige K, Lacroix S, et al. Visual Odometry Using Sparse Bundle Adjustment on an Autonomous Outdoor Vehicle[M]. Proceedings of Tagungsb and Autonome Mobile Systeme, Springer Vehicle,2005
[3]  Carlson N A. Federated Filter for Fault-Tolerant Integrated Navigation Systems[C]. IEEE PLANS, Orlando FL, USA, 1988
[4]  Wan Wenhui. Theory and Methods of Stereo Vision Based Autonomous Rover Localization in Deep Space Exploration[D]. Beijing:Institute of Remote Sensing Applications, Chinese Academy of Sciences, 2012:51-76(万文辉.基于立体视觉的深空探测车自主定位理论与方法研究[D].北京:中国科学院遥感应用研究所,2012:51-76)
[5]  Matthies L. Dynamic Stereo Vision[D]. Pittsburgh, USA:Carnegie Mellon University, 1989
[6]  Grotzinger J, Crisp J, Vasavada A R, et al. Mars Science Laboratory Mission and Science Investigation[J]. <em>Space Science Reviews</em>, 2012, 170(1-4):5-56
[7]  Liu Z, Di K, Peng M, et al. High Precision Landing Site Mapping and Rover Localization for Change-3 mission[J]. <em>Science China-Physics Mechanics & Astronomy</em>, 2015, 58(1):1-11
[8]  Kelly J, Sukhatme G S. Fast Relative Pose Calibration for Visual and Inertial Sensors[C]. International Symposium on Experimental Robotics, Berlin, Germany, 2009
[9]  Liu C, Zhou F, Sun Y, et al. Stereo-Image Matching Using a Speeded Up Robust Feature Algorithm in an Integrated Vision Navigation System[J]. <em>Journal of Navigation</em>, 2012, 65(4):671-692
[10]  Olson C F, Matthies L H, Schoppers M, et al. Rover Navigation Using Stereo Ego-Motion[J]. <em>Robotics and Autonomous Systems</em>, 2003, 43(4):215-229
[11]  Li R, Di K, Matthies R E, et al. Rover Localization and Landing Site Mapping Technology for 2003 Mars Exploration Rover Mission[J]. <em>Photogrammetric Engineering and Remote Sensing</em>, 2004, 70(1):77-90
[12]  Di Kaichang, Wan Wenhui, Liu Zhaoqing. New Visual Odometry Method for Planetary Rover Localization[J].<em>Journal of Remote Sensing</em>, 2013, 17(1):46-61
[13]  Cheng Y, Maimone M W, Matthies L H. Visual Odometry on the Mars Exploration Rovers-A Tool to Ensure Accurate Driving and Science Imaging[J]. <em>IEEE Robotics and Automation Magzine</em>, 2006, 13(2):54-62
[14]  Konolige K, Agrawal M, Solá J. Large Scale Visual Odometry for Rough Terrain[J].<em>Tracts in Advanced Robotics</em>, 2007, 66:201-212
[15]  Zhou Jiangbin, Yua Jianping, Luo Jianjun, et al. Fully Integrated SINS\\GPS Navigation System Based on Federated Filters[J].<em>Journal of System Simulation</em>, 2009, 21(6):1562-1569
[16]  Pei Fujun, Ju Hehua, Cui Pingyuan. Autonomous Navigation Method Based on Federated Kalman Filter for Lunar Rover[J]. <em>Journal of Astronautics</em>, 2009, 30(4):1429-1434

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133