|
- 2017
基于CFAR的高分PolSAR影像桥梁自动识别方法
|
Abstract:
桥梁的自动解译具有重要的应用价值,而在影像分辨率为分米级、桥梁场景复杂、桥梁目标较小的复杂情况下,准确地进行桥梁目标的自动识别比较困难。在分析高分辨率SAR(synthetic aperture radar)影像的统计特征和桥梁特征的基础上,提出了一种新的桥梁自动识别方法。首先采用基于Weibull分布的CFAR(constant false alarm rate)算法检测出潜在桥梁目标,然后基于Wishart-H-Alpha分类和形态学处理提取出桥梁场景区域,随后引入霍夫变换并利用桥梁的场景特征、几何特征和散射特征识别出桥梁目标。采用国产机载XSAR数据和美国AIRSAR数据进行验证,结果表明,该识别方法在复杂情况下能够取得令人满意的识别结果,具有较好的适应性
[1] | Ballard D H. Generalizing the Hough Transform to Detect Arbitrary Shapes[J]. <em>Pattern Recognition</em>, 1981, 13(2): 111-122 |
[2] | Zheng N, Zheng W, Xu Z L, et al. Bridge Target Detection in SAR Images Based on Texture Feature[J]. <em>Applied Mechanics and Materials</em>, 2013, 347(1): 3 634-3 638 |
[3] | Cohen A C. Maximum Likelihood Estimation in the Weibull Distribution Based on Complete and Censored Samples[J]. <em>Technometrics</em>, 1965, 7(4): 579-588 |
[4] | Cloude S R, Pottier E. An Entropy Based Classification Scheme for Land Applications of Polarimetric SAR[J]. <em>IEEE Transactions on Geoscience and Remote Sensing</em>, 1997, 35(1): 68-78 |
[5] | Jung C H, Song W Y, Rho S H, et al. Double-Step Fast CFAR Scheme for Multiple Target Detection in High Resolution SAR Images[C]. IEEE National Radar Conference, Washington D C, USA, 2010 |
[6] | Yang Wen, Chen Jiayu, Sun Hong, et al. Study on Point Targets Detection in SAR Images[J]. <em>Chinese Journal of Radio Science</em>, 2004, 19(3): 362-366(杨文,陈嘉宇,孙洪,等.基于SAR图像的点状目标检测方法研究[J].电波科学学报, 2004, 19(3): 362-366) |
[7] | Peng Z, Liu S, Tian G, et al. Bridge Detection and Recognition in Remote Sensing SAR Images Using Pulse Coupled Neural Networks[M]//Advances in Neural Network Research and Applications. Berlin, Germany: Springer, 2010 |
[8] | Zhang X, Song J, Yi Z, et al. Extraction and Recognition of Bridges over Water in High Resolution SAR Image[M]//Advances in Multimedia, Software Engineering and Computing. Berlin, Germany: Springer, 2011 |
[9] | Yin D, Zhang R. Research on the Recognition Method of Bridge Target in SAR Image[C]. IEEE International Conference on Computer and Information Technology, Bradford, UK, 2010 |
[10] | Dai Guangzhao, Zhang Rong. A Study of Bridge Recognition in High Resolution SAR Images[J]. <em>Journal of Remote Sensing</em>, 2007, 11(2): 177-184(戴光照,张荣.高分辨率SAR图像中的桥梁识别方法研究[J].遥感学报, 2007, 11(2): 177-184) |
[11] | Li Yunfan,Ma Hongchao,Wu Jianwei, et al. Extracting Bridges from Airborne LiDAR Data Based on Terrain Features[J]. <em>Geomatics and Information Science of Wuhan University</em>, 2011, 36(5): 552-555(李云帆,马洪超,邬建伟,等.顾及地形特征的机载LiDAR数据桥梁提取算法研究[J].武汉大学学报·信息科学版, 2011, 36(5): 552-555) |
[12] | Shi L. The Low Backscattering Targets Classification in Urban Areas[J]. <em>ISPRS Annals of Photogrammetry</em>, <em>Remote Sensing and Spatial Information Sciences</em>, 2012(1-7): 171-176 |
[13] | Dong Yinwen, Yuan Bingcheng, Shi Zhaoming. Automatic Recognition of Bridge Above Water in Aerial Images Based on Regional Feature[J]. <em>Geomatics and Information Science of Wuhan University</em>, 2013, 38(9): 1 073-1 077(董银文,苑秉成,石钊铭.基于区域特征的航拍图像水上桥梁自动识别[J].武汉大学学报·信息科学版, 2013, 38(9): 1 073-1 077) |
[14] | Di Bisceglie M, Galdi C. CFAR Detection of Extended Objects in High Resolution SAR Images[J]. <em>IEEE Transactions on Geoscience and Remote Sensing</em>, 2005, 43(4): 833-843 |
[15] | Marino A, Cloude S R, Woodhouse I H. Detecting Depolarized Targets Using a New Geometrical Perturbation Filter[J]. <em>IEEE Transactions on Geoscience and Remote Sensing</em>, 2012, 50(10): 3 787-3 799 |