全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

基于改进目标函数的partial EIV模型WTLS估计的新算法
A New Algorithm of Weighted Total Least Squares Estimate of Partial EIV Model Based on an Improved Objective Function

DOI: 10.13203/j.whugis20150180

Keywords: 部分变量误差模型,加权整体最小二乘,改进目标函数,变量误差,
partial EIV model
,weighted total least-squares,improved objective function,errors-in-variables

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对部分变量误差(partial EIV)模型的加权整体最小二乘(weighted total least squares,WTLS)估值的计算需要多次迭代且效率低下的情况,根据加权LS(least square)原理,通过改进目标函数,并运用矩阵微分运算以及矩阵反演变换,提出了一种计算partial EIV模型WTLS估值的新算法。算例计算结果表明,新算法具有迭代次数少、计算效率高等优点

References

[1]  Amiri-Simkooei A R, Jazaeri S. Weighted Total Least-Squares Formulated by Standard Least-Squares Theory[J]. Journal of Geodetic Science, 2012, 2:113-124
[2]  Xu P L, Liu J N. Variance Components in Errors-in-variables Models:Estimability, Stability and Bias Analysis[J]. Journal of Geodesy, 2014, 88:719-734
[3]  Xu P L, Liu J N, Shi C. Total Least-Squares Adjustment in Partial Errors-in-Variables Models:Algorithm and Statistical Analysis[J]. Journal of Geodesy, 2012, 86:661-675
[4]  Fang X. Weighted Total Least-Squares:Necessary and Sufficient Conditions, Fixed and Random Parameters[J]. Journal of Geodesy, 2013, 87:733-749
[5]  Zeng Wenxian. Effect of Random Design Matrix on Adjustment of EIV Model[D]. Wuhan:Wuhan University, 2013(曾文宪. 系数矩阵误差对EIV模型平差结果的影响研究[D]. 武汉:武汉大学,2013)
[6]  Zeng W X, Liu J N, Yao Y B. On Partial Errors-in-Variables Models with Inequality Constraints of Parameters and Varables[J]. Journal of Geodesy, 1989:111-119
[7]  Wang Leyang. Research on Theory and Application of Total Least Squares in Geodetic Inversion[D]. Wuhan:Wuhan University, 2011(王乐洋. 基于总体最小二乘的大地测量反演理论及应用研究[D].武汉:武汉大学, 2011)
[8]  Wang Leyang, Xu Caijun. Progress in Total Least Squares[J]. Geomatics and Inforamtion Science of Wuhan University, 2013, 38(7):850-856(王乐洋, 许才军. 总体最小二乘研究进展[J]. 武汉大学学报·信息科学版, 2013, 38(7):850-856)
[9]  Schaffrin B, Wieser A. On Weighted Total Least-Squares Adjustment for Linear Regression[J]. Journal of Geodesy, 2008, 82:415-421
[10]  Snow K. Topics in Total Least-Squares Adjustment within the Errors-in-Variables Model:Singular Cofactor Matrices and Prior Inforamtion[D]. Columbus:Ohio State University, 2012
[11]  Goulb G H, Lan L F C. An Analysis of the Total Least Squares Problem[J]. SIAM Journal on Numerical Analysis, 1980, 17(6):883-893
[12]  Neitzel F. Generalization of Total Least-Squares on Example of Unweighted and Weighted 2D Similarity Transfromation[J]. Journal of Geodesy, 2010, 84:751-762
[13]  Shen Y Z, Li B F, Chen Y. An Iterative Solution of Weighted Total Least-Squares Adjustment[J]. Journal of Geodesy, 2011, 85:229-238
[14]  Mahboub V. On Weighted Total Least-Squares for Geodetic Transformations[J]. Journal of Geodesy, 2012, 86:359-367
[15]  Schaffrin B, Lee I P, Felus Y, et al. Total Least-Squares for Geodetic Straight-Line and Plane Adjustment[J]. Boll. Geod. Sci. Aff., 2006, 65:141-168
[16]  Fang X. Weighted Total Least Squares Solutions for Applications in Geodesy[D]. German:Leibniz University, 2011
[17]  Yao Yibin, Huang Shuhua, Zhang Liang, et al. A New Method of TLS for Solving the Parameters of Three-Dimensional Coordinate Transformation[J]. Geomatics and Information Science of Wuhan University, 2015, 40(7):853-857(姚宜斌, 黄书华, 张良,等. 求解三维坐标转换参数的整体最小二乘新方法[J]. 武汉大学学报·信息科学版, 2015, 40(7):853-857)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133