|
- 2016
使用Kalman滤波器调整预测值的时间尺度算法
|
Abstract:
时间尺度算法用于综合钟组内所有的原子钟,建立一个频率稳定度更高的时间尺度,其核心环节可以概括为通过N-1组观测量(钟差)计算得到N台钟的权重和预测值。传统算法主要关注如何调整权重来提高时间尺度的稳定度,本文算法通过调整预测值来提高时间尺度的稳定度。本文算法使用Kalman滤波器对观测钟差进行状态估计,在Kalman滤波器每一次递推的过程中,调整一次预测值,通过每次实时调整预测值来建立时间尺度。理论推导和仿真实验都表明,本文建立的时间尺度滤除了频率白噪声,主要只含有频率随机游走噪声,所以具有很高的中短期稳定度。该时间尺度是一个连续、实时、可预测的时间尺度
[1] | ParkerT E, Levine J.Impact of New High Stability Frequency Standards on the Performance of the NIST AT1 Time Scale[J]. <em>IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, </em>1997, 44(6): 1 239-1 244 |
[2] | Galleani L, Tavella P. Time and the Kalman Filter [J]. <em>IEEE Control System Magazine</em>, 2010: 44-65 |
[3] | Suess M, Greenhall C A. Congruence of Two Kalman Filter Composite Clocks[J]. <em>Metrologia</em>, 2013, 50: 499-508 |
[4] | Zhang Qinghua, Sui Lifen, Jia Xiaolin. Monitor State of GPS Rb Clock Using Jones-Tryon Kalman Filter[J].<em>Geomatics and Information Science of Wuhan University</em>, 2012,37(4): 436-440(张清华,隋立芬,贾小林. 应用Jones-Tryon Kalman滤波器对在轨GPS Rb钟进行状态监测[J]. 武汉大学学报·信息科学版,2012, 37(4): 436-440) |
[5] | Deng Zili. Kalman Filter and Weiher Filter: Modern Time Sequence Analysis Method[M]. Harbin: Press of Harbin Institute of Technology, 2001(邓自立. 卡尔曼滤波与维纳滤波:现代时间序列分析方法[M].哈尔滨:哈尔滨工业大学出版社,2001) |
[6] | Kasdin N J. Discrete Simulation of Colored Noise and Stochastic Processes and 1/f Power Law Noise Generation [J]. <em>IEEE,</em> 1995, 83(5): 802-827 |
[7] | Tavella P, Thomas C. Comparative Study of Time Scale Algorithms[J]. <em>Metrologia</em>, 1991, 28: 57-63 |
[8] | JonesR H, Tryon P V. Estimating Time from Atomic Clocks[J]. <em>Journal of Research of the National Bureau of the Standards</em>, 1983, 88(1): 17-24 |
[9] | Greenhall C A. A Kalman Filter Clock Ensemble Algorithm that Admits Measurement Noise[J]. <em>Metrologia</em>, 2006, 43: 311-321 |
[10] | Huang Guanwen, Zhang Qin, Xu Guochang, et al. IGS Precise Satellite Clock Model Fitting and Its Precision by Using Spectral Analysis Method[J]. <em>Geomatics and Information Science of Wuhan University</em>, 2008, 33(5): 496-499 (黄观文,张勤,许国昌,等,基于频谱分析的IGS 精密星历卫星钟差精度分析研究[J]. 武汉大学学报·信息科学版,2008,33(5): 496-499) |
[11] | Zucca C, Tavella P. The Clock Model and Its Relationship with the Allan and Related Variances[J]. <em>IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control</em>, 2005, 52(2): 289-296 |
[12] | Galleani L, Sacerdote L, Tavella P, et al. A Mathematical Model for the Atomic Clock Error [J]. <em>Metrologia</em>, 2003, 40: 257-264 |
[13] | Greenhall C A. Forming Stable Timescales from the Jones-Tryon Kalman Filter[J]. <em>Metrologia</em>, 2003, 40: 335-341 |
[14] | Dong Shaowu. Study on Several Important Technical Issues in Time-keeping[D]. Beijing: Graduate University of Chinese Academy of Sciences, 2007(董绍武.守时中的若干重要技术问题研究[D].北京:中国科学院研究生院,2007) |