|
- 2017
综合GPS和NCEP CFSv2的区域PWV估计方法
|
Abstract:
利用地基GPS估计PWV(precipitable water vapor)时,除GPS观测数据外,GPS测站地表的气温和气压也是必要参数。针对我国多数GPS网并未配备相应的气象传感器的情况,利用美国环境预报中心气候预报系统第2版提供的逐6 h产品,并顾及测站高程转换时的平均海平面高改正,提出一种GPS测站气象参数的插值新方法。以香港卫星定位参考站网实测GPS数据进行试验研究,结果表明,平均海平面高对地表气压的插值结果影响较大,而对地表气温的插值结果影响较小;经平均海平面高改正后,地表气压插值结果的平均均方根误差(RMSE)为1.61 hPa,地表气温插值结果的平均RMSE为1.93 K;由插值气象参数估计的PWV的平均RMSE为2.76 mm,验证了所提方法的有效性
[1] | Quinn J K, Herring T A. GPS Atmospheric Water Vapor Measurements Without the Use of Local Barometers[J]. <em>Eos Trans AGU</em>, 1996, 77(46): 1 233-1 254 |
[2] | Duan J, Bevis M, Fang P, et al. GPS Meteorology: Direct Estimation of the Absolute Value of Precipitable Water[J]. <em>Journal of Applied Meteorology</em>, 1996, 35(6): 830-838 |
[3] | Rocken C, van Hove T, Ware R. Near Real-time GPS Sensing of Atmospheric Water Vapor[J]. <em>Geophysical Research Letters</em>, 1997, 24(24): 3 221-3 224 |
[4] | Chen Yongqi, Liu Yanxiong, Wang Xiaoya, et al. GPS Real-time Estimation of Precipitable Water Vapor Hong Kong Experiences[J].<em>Acta Geodaetica et Cartographica Sinca</em>, 2007, 36(1): 9-12(陈永奇, 刘焱雄, 王晓亚,等. 香港实时GPS水汽监测系统的若干关键技术[J]. 测绘学报, 2007, 36(1): 9-12) |
[5] | Yuan Y B, Zhang K F, Rohm W, et al. Real-time Retrieval of Precipitable Water Vapor from GPS Precise Point Positioning[J]. <em>Journal of Geophysical Research Atmospheres</em>, 2014, 119(16): 10 044-10 057 |
[6] | Chang Liang, He Xiufeng. Regional Precipitation Forecast Using GPS and NCEP[J]. <em>Scientia Sinica Phys, Mech & Astron</em>, 2010, 40(5): 685-692(常亮, 何秀凤. 综合GPS和NCEP在区域降雨预报中的应用研究[J]. 中国科学(物理学,力学,天文学),2010, 40(5): 685-692) |
[7] | Brunner F K, Gu M. An Improved Model for the Dual Frequency Ionospheric Correction of GPS Observations[J]. <em>Manuscripta Geodaetica</em>, 1991, 16(3): 205-214 |
[8] | Bevis M, Businger S, Chiswell S, et al. GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water[J]. <em>Journal of Applied Meteorology</em>, 1994, 33(3): 379-386 |
[9] | Schaeffer P, Faugere Y, Legeais J F, et al. The CNES_CLS11 Global Mean Sea Surface Computed from 16 Years of Satellite Altimeter Data[J]. <em>Marine Geodesy</em>, 2012, 35(sup1): 3-19 |
[10] | Saha S, Moorthi S, Wu X, et al. The NCEP Climate Forecast System Version 2[J]. <em>Journal of Climate</em>, 2014, 27(6): 2 185-2 208 |
[11] | Klein- Baltink H, Derks H J P, van Lammeren A, et al. Water Vapour from GPS Tropospheric Delay Estimates[J]. <em>GPS Water Vapour Meteorology, Beleids Commissie Remote Sensing (BCRS),</em> 1999(3): 3-11 |
[12] | Jade S, Vijayan M S M. GPS-based Atmospheric Precipitable Water Vapor Estimation Using Meteorological Parameters Interpolated from NCEP Global Reanalysis Data[J]. <em>Journal of Geophysical Research Atmospheres</em>, 2008, 113(D3):309-327 |
[13] | Bai Z, Feng Y. GPS Water Vapor Estimation Using Interpolated Surface Meteorological Data from Australian Automatic Weather Stations[J]. <em>Journal of Global Positioning Systems</em>, 2003, 2(2):83-89 |
[14] | Schüler T. On Ground-based GPS Tropospheric Delay Estimation[D]. Neubiberg: University der Bundeswehr München, 2001 |
[15] | Zhao Jingyang, Song Shuli, Zhu Wenyao. Accuracy Assessment of Applying ERA-Interim Reanalysis Data to Calulate Ground-based GPS/PWV over China[J].<em>Geomatics and Information Science of Wuhan University</em>, 2014, 39(8): 935-939(赵静旸, 宋淑丽, 朱文耀. ERA-Interim应用于中国地区地基GPS/PWV计算的精度评估[J]. 武汉大学学报·信息科学版, 2014, 39(8): 935-939) |
[16] | Bevis M, Businger S, Herring T A, et al. GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System[J]. <em>Journal of Geophysical Research Atmospheres</em>, 1992, 97(D14): 15 787-15 801 |
[17] | Jiang P, Ye S R, Liu Y Y, et al. Near Real-time Water Vapor Tomography Using Ground-based GPS and Meteorological Data: Long-term Experiment in Hong Kong[J]. <em>Annales Geophysicae</em>, 2014, 32(8): 911-923 |
[18] | Saastamoinen J. Atmospheric Correction for the Troposphere and Stratosphere in Radio Ranging Satellites[J]. <em>The Use of Artificial Satellites for Geodesy</em>, 1972: 247-251 |