|
- 2018
高分影像信息提取的特征结构化多尺度分析建模方法研究
|
Abstract:
围绕高分影像丰富的细节信息和多分辨率特征多尺度分析与信息提取的建模方法开展研究。首先研究高分影像特征分解与表达的变换域方法,构成多尺度、多通道、多层级的变换特征,然后分别使用下采样、上采样和非下采样方法进行特征结构化,最后建立特征结构化多尺度分析模型。并对直塔模型进行具体建模过程分析与实验研究,验证了特征结构化多尺度分析模型方法的有效性。结果表明,该方法可以增强高分影像多尺度分析的灵活性,并有效解决其多尺度分析与信息提取问题
[1] | Wang Shuang, Xia Yu, Jiao Licheng. Mean Shift Based Adaptive Texture Image Segmentation Me-thod[J]. Journal of Software, 2010, 21(6):1451-1461(王爽,夏玉,焦李成.基于均值漂移的自适应纹理影像分割方法[J].软件学报, 2010, 21(6):1451-1461) |
[2] | Jiao Licheng,Sun Qiang.Advances and Perspective on Image Perception and Recognition in Multiscale Transform Domainns[J].Chinese Journal of Computers, 2006, 29(2):177-193(焦李成,孙强.多尺度变换域图像的感知与识别:进展和展望[J].计算机学报, 2006, 29(2):177-193) |
[3] | Comber A, Medcalf K, Lucas R, et al. Managing Uncertainty when Aggregating from Pixels to Objects:Habitats, Context-Sensitive Mapping and Possibility Theory[J]. International Journal of Remote Sensing,2010, 31(4):1061-1068 |
[4] | Baatz M, Benz U, Dehghani S, et al. eCognition Professional User Guide 4(Definiens Imaging)[OL]. https://www.scienceopen.com/document?vid=94bd0461-b700-48d9-a809-06ddb3e35b2a,2003 |
[5] | Huang Xin, Zhang Liangpei. An Adaptive Mean-Shift Analysis Approach for Object Extraction and Classification from Urban Hyperspectral Imagery[J].IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(12):4173-4185 |
[6] | Huang Xin. Multiscale Texture and Shape Feature Extraction and Object-Oriented Classification for very High Resolution Remotely Sensed Imagery[D]. Wuhan:Wuhan University,2009(黄昕.高分辨率遥感影像多尺度纹理、形状特征提取与面向对象分类研究[D]. 武汉:武汉大学,2009) |
[7] | Cao Jiannong,Guo Jia,Wang Bei, et al. Multi-scale Method of Urban Tree Canopy Clustering Recognition in High-Resolution Images[J].Journal of Jilin University(Engineering and Technology Edition), 2014, 44(4):1215-1224(曹建农,郭佳,王蓓,等,高分辨率遥感影像中城区树冠多尺度聚类识别方法[J].吉林大学学报(工学版),2014, 44(4):1215-1224) |
[8] | Cao Jiannong, Wang Pinglu, Dong Yuwei. Automatic Extraction Technique of Residential Areas in High Reso-lution Remote Sensing Image[J].Geomatics and Information Science of Wuhan University, 2014, 39(7):831-837(曹建农,王平禄,董昱威.高分辨率遥感影像上居民地自动提取方法[J].武汉大学学报·信息科学版, 2014, 39(7):831-837) |
[9] | Rahul R, Nicholas A S H, Yogesh K. Analyzing the Effect of Different Aggregation Approaches on Remotely Sensed Data[J]. International Journal of Remote Sensing, 2013, 34(14):4900-4916 |
[10] | Minh N D, Martin V. The Finite Ridgelet Transform for Image Representation[J].IEEE Transactions on Image Processing, 2003, 12:16-28 |
[11] | Flesia A G, Helor H, Averbuch A, et al. Digital Implementation of Ridgelet Packets[J]. Studies in Computational Mathematics, 2003, 10(3):31-60 |
[12] | Zhang Liangpei, Huang Xin, Huang Bo, et al. A Pixel Shape Index Coupled with Spectral Information for Classification of High Spatial Resolution Remotely Sensed Imagery[J].IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(10):2950-2961 |
[13] | Benediktsson J A, Palmason J A, Sveinsson J. Classification of Hyperspectral Data from Urban Areas Based on Extended Morphological Profiles[J].IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3):480-491 |
[14] | Huang Xin, Zhang Liangpei, Li Pingxiang. An Adaptive Multiscale Information Fusion Approach for Feature Extraction and Classification of IKONOS Multispectral Imagery over Urban Areas[J].IEEE Geoscience and Remote Sensing Letters, 2007, 4(4):654-658 |
[15] | Candues E J, Donoho D L. Ridgelets:A Key to Higher-Dimensional Intermittency?[J]. Philoso-phical Transactions Mathematical Physical and Engineering Sciences, 1999, 357(1760):2495-2509 |
[16] | Coifman R R, Meyer F. Brushlets:A Tool for Directional Image Analysis and Image Compression[J].Applied and Computational Harmonic Analysis, 1996, 4(2):147-187 |
[17] | Wang Bo,Yao Hongyu,Li Bicheng. An Efficient Image Retrieval Approach Based on Generalized Ima-ge Co-occurrence Matrix[J]. Geomatics and In-formation Science of Wuhan University, 2006, 31(9):761-764(王波,姚宏宇,李弼程.一种有效的基于灰度共生矩阵的图像检索方法[J].武汉大学学报·信息科学版, 2006, 31(9):761-764) |
[18] | Jean-Luc S, Emmanuel J C, David L D. The Curvelet Transform for Image Denoising[J].IEEE Transactions on Image Processing, 2002, 11(6):670-684 |
[19] | Lv Rui, Shao Zhenfeng. A Pedestrian Detection Algorithm Based on Sparse Multi-scale Image Segmentation and Cascade Deformable Part Model[J].Geomatics and Information Science of Wuhan University, 2016, 41(11):1544-1549(吕瑞,邵振峰.基于稀疏多尺度分割和级联形变模型的行人检测算法[J].武汉大学学报·信息科学版, 2016, 41(11):1544-1549) |
[20] | Ma Jianwei, Plonka G. The Curvelet Transform:A Review of Recent Applications[J].IEEE Signal Processing Magazine, 2010, 27(2):118-133 |
[21] | Waske B, Benediktsson J A. Fusion of Support Vector Machines for Classification of Multisensor Data[J].IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(12):3858-3866 |
[22] | Huang Xin,Zhang Liangpei. Comparison of Vector Stacking, Multi-SVMs Fuzzy Output, and Multi-SVMs Voting Methods for Multiscale VHR Urban Mapping[J].IEEE Geoscience and Remote Sensing Letters, 2010, 7(2):261-265 |
[23] | Zhong Yanfei, Zhang Liangpei, Huang Bo, et al. An Unsupervised Artificial Immune Classifier for Multi/Hyperspectral Remote Sen-sing Imagery[J]. IEEE Transactions on Geoscience and Remote Sen-sing, 2006, 44(2):420-431 |