全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

分数阶Victor-Carmen混沌系统的自适应滑模控制
Self-adaptive sliding mode control of fractional-order Victor-Carmen chaotic systems

DOI: 10.6040/j.issn.1672-3961.0.2016.327

Keywords: Victor-Carmen系统,分数阶,混沌同步,滑模,
fractional-order
,Victor-Carmen systems,chaos synchronization,sliding mode

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 根据分数阶微积分的相关理论利用自适应滑模控制方法研究分数阶Victor-Carmen混沌系统的滑模同步控制问题,设计分数阶滑模函数并给出控制器的构造,利用Lyapunov稳定性理论给出严格的数学证明,得到系统取得滑模同步的两个充分性条件。研究结果表明:选取适当的控制律以及滑模面下,分数阶Victor-Carmen系统取得混沌同步。数值算例表明该方法有效。
Abstract: The problem of sliding mode synchronization of fractional-order Victor-Carmen systems was studied using self-adaptive sliding mode control approach based on fractional-order calculus theory. The fractional-order slding mode function was designed, the controllers and the strict proof in mathematics using Lyapunov stability theory were given. Two sufficient conditions were arrived for the fractional order systems getting sliding model synchronization. The research conclusion illustrated that fractional-order multi-scroll systems was sliding mode chaos synchronization under proper controllers and sliding mode surface.The numerical simulations demonsrrated the effectiveness of the proposed method

References

[1]  BHAT S P, BERNSTEIN D S. Geometric homogeneity with applications to finite-time stability[J]. Mathematics of Control Signals and Systems, 2005, 17(2):101-127.
[2]  ZHANG Yi. Fractional differential equations of motion interms of combined riemann-liouville derivatives[J].Chinese Physics B, 2012, 8(21): 302-306.
[3]  SUN Y P, LI J M, WANG J A, et al. Generalized projective synchronization of chaotic systems via adaptive learning control[J].Chinese Physics B, 2010, 19(2):502-505.
[4]  余明哲,张友安. 一类不确定分数阶混沌系统的滑模自适应同步[J].北京航空航天大学学报, 2014, 40(9):1276-1280. YU Mingzhe, ZHANG Youan. Sliding mede adaptive synchronization for a class of fractional-order chaotic systems with uncertainties[J].Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(9):1276-1280.
[5]  金世欣, 张毅.基于Caputo分数阶导数的含时滞的非保守系统动力学的Noether 对称性[J].中山大学学报(自然科学版), 2015, 54(5):49-55. JIN Shixin, ZHANG Yi. Noether symmetries for non-conservative Lagrange systems with time delay based on Caputo fractional derivative[J]. Journal of Zhongshan University(Science Edition), 2015, 54(5):49-55.
[6]  LIU P, LIU S. Robust adaptive full state hybrid synchronization of chaotic complex systems with unknown parameters and external disturbances[J]. Nonlinear Dynamics, 2012, 70(1):585-599.
[7]  毛北行, 张玉霞. 具有非线性耦合复杂网络混沌系统的有限时间同步[J].吉林大学学报(理学版), 2015, 53(4):757-761. MAO Beixing, ZHANG Yuxia. Finite-time chaos synchronization of complex networks systems with nonlinear coupling[J]. Journal of Jiling University(Science Edition), 2015, 53(4):757-761.
[8]  MOHAMMAD P A. Robust finite-time stabilization of fractional-order chaotic susyems based on fractional Lyapunov stability theory[J].Journal of Computation and Nonlinear Dynamics, 2012, 32(7):1011-1015.
[9]  张燕兰. 分数阶Rayleigh-Duffling-like系统的自适应追踪广义投影同步[J].动力学与控制学报, 2014, 12(4):348-352. ZHANG Yanlan. Adaptive tracking generalized projective synchronization of fractional Rayleigh-Duffling-like system[J].Journal of Dynamics and Control, 2014, 12(4): 348-352.
[10]  GRIGORAS V, GRIGORAS C. A novel chaotic systems for random pulse generation[J].Advanced in Electrical and Computer Engineering, 2014, 14(2):109-112.
[11]  丁金凤,张毅. 基于按指数律拓展的分数阶积分的El-Nabulsi-Pfaff 变分问题的Noether 对称性[J].中山大学学报(自然科学版), 2014, 54(6):150-154. DING Jinfeng, ZHANG Yi.Neother symmetries for El-Nabulsi-Pfaff variational problem for extended exponential fractional integral[J]. Journal of Zhongshan University(Science Edition), 2014, 53(6):150-154.
[12]  SALARIEH H, ALASTY A. Adaptive synchronization of two chaotic systems with stochastic unknown parameters[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(2):508-519.
[13]  孙宁, 张化光, 王智良. 不确定分数阶混沌系统的滑模投影同步[J].浙江大学学报(工学版), 2010, 44(7):1288-1291. SUN Ning, ZHANG Huaguang, WANG Zhiliang. Projective synchronization of uncertain fractional order chaotic system using sliding mode controller[J].Journal of Zhejiang University(Engineering Science), 2010, 44(7):1288-1291.
[14]  MOHAMMAD P A, SOHRAB K, GHASSE Mhassem A. Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique[J]. Applied Mathematical Modelling, 2011, 35(6):3080-3091.
[15]  YANG L, YANG J.Robust finite-time convergence of chaotic systems via adaptive terminal sliding mode scheme[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(6):2405-2413.
[16]  MILAD Mohadeszadeh, HADI Delavari.Synchronization of fractional order hyper-chaotic systems based on a new adaptive sliding mode control[J].International Journal of Dynamics and Control, 2015, 10(7):435-446.
[17]  WANG X, HE Y.Projective synchronization of fractional order chaotic system based on linear separation[J].Phys Lett A, 2008, 37(12):435-441.
[18]  仲启龙, 邵永辉, 郑永爱. 分数阶混沌系统的主动滑模同步[J].动力学与控制学报, 2015, 13(1):18-22. ZHONG Qilong, SHAO Yonghui, ZHENG Yongai. Synchronization of the fractional order chaotic systems based on TS models[J].Journal of Dynamics and Control, 2012, 17(2):46-49.
[19]  徐瑞萍, 高明美. 自适应终端滑模控制不确定混沌系统的同步[J].控制工程, 2016, 23(5):715-719. XU Ruiping, GAO Mingmei. Synchronization of chaotic susyems with uncertainty using adaptive terminal sliding mode controller[J].Control Engineering of China, 2016, 23(5):715-719.
[20]  PODLUBN Y. Fractional differential equation[M]. New York:Academic Press, 1999.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133