%0 Journal Article %T 分数阶Victor-Carmen混沌系统的自适应滑模控制<br>Self-adaptive sliding mode control of fractional-order Victor-Carmen chaotic systems %A 毛北行 %A 程春蕊< %A br> %A MAO Beixing %A CHENG Chunrui %J 山东大学学报(工学版) %D 2017 %R 10.6040/j.issn.1672-3961.0.2016.327 %X 摘要: 根据分数阶微积分的相关理论利用自适应滑模控制方法研究分数阶Victor-Carmen混沌系统的滑模同步控制问题,设计分数阶滑模函数并给出控制器的构造,利用Lyapunov稳定性理论给出严格的数学证明,得到系统取得滑模同步的两个充分性条件。研究结果表明:选取适当的控制律以及滑模面下,分数阶Victor-Carmen系统取得混沌同步。数值算例表明该方法有效。<br>Abstract: The problem of sliding mode synchronization of fractional-order Victor-Carmen systems was studied using self-adaptive sliding mode control approach based on fractional-order calculus theory. The fractional-order slding mode function was designed, the controllers and the strict proof in mathematics using Lyapunov stability theory were given. Two sufficient conditions were arrived for the fractional order systems getting sliding model synchronization. The research conclusion illustrated that fractional-order multi-scroll systems was sliding mode chaos synchronization under proper controllers and sliding mode surface.The numerical simulations demonsrrated the effectiveness of the proposed method %K Victor-Carmen系统 %K 分数阶 %K 混沌同步 %K 滑模 %K < %K br> %K fractional-order %K Victor-Carmen systems %K chaos synchronization %K sliding mode %U http://gxbwk.njournal.sdu.edu.cn/CN/10.6040/j.issn.1672-3961.0.2016.327