全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

关于S系的覆盖
On covers of S acts

DOI: 10.6040/j.issn.1671.9352.0.2016.037

Keywords: 有向上极限,WPF覆盖,STF覆盖,余积,FGWI覆盖,

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 设S是幺半群, FGWI, WPF, STF分别表示有限生成弱内射右S系、弱拉回平坦右S系和强挠自由右S系的类。证明了在有左零元的左reversible幺半群上,每一个右S系Ai∈FGWI当且仅当∪[DD(-*3]·[DD)]i∈IAi∈FGWI;在Noetherian幺半群上,任意fg弱内射S系的有向上极限是fg弱内射的;同时考虑了WPF覆盖和STF覆盖,给出了每一个右S系都有FGWI覆盖的条件。证明了若S是有有限几何型的有限生成幺半群,每一个右S系都有WPF覆盖,以及在任意幺半群S上,每一个右S系都有STF覆盖。
Abstract: Let S be a monoid, FGWI, WPF and STF denote the class of finitely generated weakly injective right S acts, weakly pullback flat right S acts and strongly torsion free right Sacts respectively. It is proved that if S is a left reversible monoid with a left zero, then every rightS actAi∈FGWI if and only if the coproduct ∪[DD(-*3]·[DD)]i∈IAi∈FGWI. IfS is a Noetherian monoid, then the directed colimit of fgweakly injective Sacts is fgweakly injective. At the same time, WPF covers and STF covers are investigated, the condition over which every right Sact has a FGWI cover is obtained. It is proved that every right Sact has a WPF cover over a finitely generated monoid with a finite geometric type and every right Sact has a STFcover over any monoid S

References

[1]  BAILEY A, RENSHAW J. Covers of acts over monoids and pure epimorphisms[J]. Proceedings of the Edinburgh Mathematical Society, 2014, 57:589617.[2] BAILEY A, RENSHAW J. Cover of acts over monoids II[J]. Semigroup Forum, 2013, 87:257274.[3] LAAN V. Pullback and flatness properties of acts I[J]. Communication in Algebra, 2001, 29:829850.[4] LAAN V. On a generalization of strong flatness[J]. Acta Comment Univ Tartu, 1998, 2(2):5560.[5] KILP M, KNAUER U, MIKHALEV A V. Monoids, acts and categories[M]. Berlin: Walter de Gruyter, 2000. [6] AHSAN J, LIU Zhongkui. A homological approach to the theory of monoids[M]. Beijing: Science Press, 2008. [7] GOLCHIN A. Flatness and coproducts[J]. Semigroup Forum, 2006, 72:433440.[8] SILVA P V, STEINBERG B. A geometric characterization of automatic monoids[J]. Q J Math, 2004, 55:333356.[9] RENSHAW J. Monoids for which condition (p) acts are projective[J]. Semigroup Forum, 2000, 61:4656.[10] MAHMOUDI M, RENSHAW J. On covers of cyclic acts over monoids[J]. Semigroup Forum, 2008, 77:325338.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133