%0 Journal Article %T 关于S系的覆盖<br>On covers of S acts %A 李焕云 %A 乔虎生< %A br> %A LI Huan-yun %A QIAO Hu-sheng %J 山东大学学报(理学版) %D 2016 %R 10.6040/j.issn.1671.9352.0.2016.037 %X 摘要: 设S是幺半群, FGWI, WPF, STF分别表示有限生成弱内射右S系、弱拉回平坦右S系和强挠自由右S系的类。证明了在有左零元的左reversible幺半群上,每一个右S系Ai∈FGWI当且仅当∪[DD(-*3]·[DD)]i∈IAi∈FGWI;在Noetherian幺半群上,任意fg弱内射S系的有向上极限是fg弱内射的;同时考虑了WPF覆盖和STF覆盖,给出了每一个右S系都有FGWI覆盖的条件。证明了若S是有有限几何型的有限生成幺半群,每一个右S系都有WPF覆盖,以及在任意幺半群S上,每一个右S系都有STF覆盖。<br>Abstract: Let S be a monoid, FGWI, WPF and STF denote the class of finitely generated weakly injective right S acts, weakly pullback flat right S acts and strongly torsion free right Sacts respectively. It is proved that if S is a left reversible monoid with a left zero, then every rightS actAi∈FGWI if and only if the coproduct ∪[DD(-*3]·[DD)]i∈IAi∈FGWI. IfS is a Noetherian monoid, then the directed colimit of fgweakly injective Sacts is fgweakly injective. At the same time, WPF covers and STF covers are investigated, the condition over which every right Sact has a FGWI cover is obtained. It is proved that every right Sact has a WPF cover over a finitely generated monoid with a finite geometric type and every right Sact has a STFcover over any monoid S %K 有向上极限 %K WPF覆盖 %K STF覆盖 %K 余积 %K FGWI覆盖 %K < %K br> %U http://lxbwk.njournal.sdu.edu.cn/CN/10.6040/j.issn.1671.9352.0.2016.037