|
- 2016
拟线性黏弹性方程一个新的H 1-Galerkin混合有限元分析
|
Abstract:
摘要: 利用不完全双二次元Q-2和一阶BDFM元, 对拟线性黏弹性方程构造了一个新的H 1-Galerkin混合元模式。通过Bramble-Hilbert引理, 证明了单元所对应的插值算子一个新的高精度结果。 进一步地, 在半离散和一个二阶全离散格式下, 分别导出了原始变量u在H 1-模和中间变量(→overp)在 H(div)-模意义下的超逼近性质。
Abstract: A new H 1-Galerkin mixed finite element pattern for quasi-linear viscoelasticity equation is constructed using incomplete biquadratic element Q-2 and first order BDFM element. Through Bramble-Hilbert lemma, a newhigh precision results of interpolation operators corresponding to unit are proved. Further, the superclose properties for the primitive variables u in H 1-norm and the intermediate variable (→overp) in H(div)-norm are obtained respectively in semi-discrete and fully discrete schemes
[1] | 郭玲, 陈焕贞. Sobolev方程的<i>H</i> <sup>1</sup>-Galerkin混合有限元方法[J]. 系统科学与数学, 2006, 26(3):301-314. GUO Ling, CHEN Huanzhen. <i>H</i> <sup>1</sup>-Galerkin mixed finite element method for the Sobolev equation[J]. J Sys Sci & Math Scis, 2006, 26(3):301-314. |
[2] | 郝晓斌. 非协调有限元的构造及其应用[D]. 郑州:郑州大学, 2008. HAO Xiaobin. Construction and application of nonconforming finite element[D]. Zhengzhou: Zhengzhou University, 2008. |
[3] | LIN Qun, ZHANG Shuhua. A direct global superconvergence analysis for Sobolev and viscoelasticity type equations[J]. Appl Math, 1997, 42(1):23-34. |
[4] | JIN Dayong, LIU Tang, ZHANG Shuhua. Global superconvergence analysis of Wilson element for Sobolev and viscoelasticity type equations[J]. J Syst Sci Complex, 2004, 17(4):452-463. |
[5] | SHI Dongyang, PENG Yucheng, CHEN Shaochun. Superconvergence of a nonconforming finite element approximation to viscoelasticity type equations on anisotropic meshes[J]. Numerical Mathematics: A Journal of Chinese Universities(English Series), 2006, 15(4):375-384. |
[6] | 石东洋, 关宏波. 粘弹性方程的非协调变网格有限元方法[J]. 高校应用数学学报, 2008, 23(4):452-458. SHI Dongyang, GUAN Hongbo. A class of nonconforming finite element methods for viscoelasticity type equations with moving grid[J]. Appl Math J Chin Univ, 2008, 23(4):452-458. |
[7] | 王瑞文. 双曲型积分微分方程<i>H</i> <sup>1</sup>-Galerkin混合元法的误差估计[J]. 计算数学, 2006, 28(1):19-30. WANG Ruiwen. Error estimates for <i>H</i> <sup>1</sup>-Galerkin mixed finite element methods for hyperbolic type integro-differential equation[J]. Math Numer Sin, 2006, 28(1):19-30. |
[8] | Hale J K. Ordinary differential equations[M]. New York: Willey, 1969. |
[9] | 刘洋, 李宏, 何斯日古楞. 伪双曲型积分-微分方程<i>H</i> <sup>1</sup>-Galerkin混合元法误差估计[J]. 高等学校计算数学学报, 2010, 32(1):1-20. LIU Yang, LI Hong, HE Siriguleng. Error estimates of <i>H</i> <sup>1</sup>-Galerkin mixed finite element methods for pseudo-hyperbolic partial integro-differential equation[J]. Numer Math J Chin Univ, 2010, 32(1):1-20. |
[10] | 石东洋, 唐启立, 董晓靖. 强阻尼波动方程的<i>H</i> <sup>1</sup>-Galerkin混合有限元超收敛分析[J]. 计算数学, 2012, 34(3):317-328. SHI Dongyang, TANG Qili, DONG Xiaojing. Superconvergence analysis of <i>H</i> <sup>1</sup>-Galerkin mixed finite element method for strongly damped wave equations[J]. Math Numer Sin, 2012, 34(3):317-328. |
[11] | SHI Dongyang, LIAO Xin, TANG Qili. Highly efficient <i>H</i><sup>1</sup>-Galerkin mixed finite element method(MFEM)for parabolic integro-differential equation[J]. Appl Math Mech, 2014, 35(7):897-912. |
[12] | 石东洋, 史艳华, 王芬玲. 四阶拋物方程<i>H</i> <sup>1</sup>-Galerkin混合有限元方法的超逼近及最优误差估计[J]. 计算数学, 2014, 36(4):363-380. SHI Dongyang, SHI Yanhua, WANG Fenling. Supercloseness and the optimal order error estimates of <i>H</i> <sup>1</sup>-Galerkin mixed finite element method for forth-order parabolic equation[J]. Math Numer Sin, 2014, 36(4):363-380. |
[13] | 陈红斌, 刘晓奇, 徐大. 粘弹性双曲型方程的<i>H</i> <sup>1</sup>-Galerkin混合有限元方法[J]. 高等学校计算数学学报, 2011, 33(3):279-288. CHEN Hongbin, LIU Xiaoqi, XU Da. <i>H</i> <sup>1</sup>-Galerkin mixed finite element method for the viscoelasticity wave equation[J]. Numer Math J Chin Univ, 2011, 33(3):279-288. |
[14] | WANG Jinfeng, LIU Yang, LI Hong. Error estimates of <i>H</i> <sup>1</sup>-Galerkin mixed methods for the viscoelasticity wave equation[J]. Chin Quart J of Math, 2011, 26(1):131-137. |
[15] | 彭玉成, 华沛. 粘弹性方程的一个二阶非协调有限元逼近分析[J]. 高等学校计算数学学报, 2013, 35(3):240-249. PENG Yucheng, HUA Pei. Analysis of a second order nonconforming finite element approximation to viscoelasticity type equations[J]. Numer Math J Chin Univ, 2013, 35(3):240-249. |
[16] | 林群, 严宁宁. 高效有限元构造与分析[M]. 保定: 河北大学出版社, 1996. LIN Qun, YAN Ningning. Construction and analysis for effecitive finite element methods[M]. Baoding: Hebei University Press, 1996. |
[17] | 李宏, 孙萍, 尚月强,等. 粘弹性方程全离散化有限体积元格式及数值模拟[J]. 计算数学, 2012, 34(4):413-424. LI Hong, SUN Ping, SHANG Yueqiang, et al. A fully discrete finite volume element formulation and numerical simulations for viscoelastic equations[J]. Math Numer Sin, 2012, 34(4):413-424. |
[18] | 李先崇, 孙萍, 安静,等.粘弹性方程一种新的分裂正定混合元法[J]. 计算数学, 2013, 35(1):49-58. LI Xianchong, SUN Ping, AN Jing, et al. A new splitting positive definite mixed finite element method for viscoelastic equation[J]. Math Numer Sin, 2013, 35(1):49-58. |
[19] | SHI Dongyang, ZHANG Buying. High accuracy analysis of the finite element method for nonlinear viscoelastic wave equations with nonlinear boundary conditions[J]. J Syst Sci Complex, 2011, 24(4):795-802. |
[20] | WANG Fengling, ZHAO Yanmin, SHI Dongyang. <i>EQ</i><sup>rot</sup><sub>1</sub> nonforming finite element analysis for nonlinear viscoelasticity equations[J]. Math Appl, 2013, 26(1):1-10. |
[21] | Pani A K. An <i>H</i> <sup>1</sup>-Galerkin mixed finite element methods for parabolic partial differential equations[J]. SIAM J Numer Anal, 1998, 35(2):721-727. |