%0 Journal Article %T 拟线性黏弹性方程一个新的H 1-Galerkin混合有限元分析<br>New H 1-Galerkin mixed finite element analysis for quasi-linear viscoelasticity equation %A 刁群 %A 石东洋< %A br> %A DIAO Qun %A SHI Dong-yang %J 山东大学学报(理学版) %D 2016 %R 10.6040/j.issn.1671-9352.0.2015.154 %X 摘要: 利用不完全双二次元Q-2和一阶BDFM元, 对拟线性黏弹性方程构造了一个新的H 1-Galerkin混合元模式。通过Bramble-Hilbert引理, 证明了单元所对应的插值算子一个新的高精度结果。 进一步地, 在半离散和一个二阶全离散格式下, 分别导出了原始变量u在H 1-模和中间变量(→overp)在 H(div)-模意义下的超逼近性质。<br>Abstract: A new H 1-Galerkin mixed finite element pattern for quasi-linear viscoelasticity equation is constructed using incomplete biquadratic element Q-2 and first order BDFM element. Through Bramble-Hilbert lemma, a newhigh precision results of interpolation operators corresponding to unit are proved. Further, the superclose properties for the primitive variables u in H 1-norm and the intermediate variable (→overp) in H(div)-norm are obtained respectively in semi-discrete and fully discrete schemes %K 拟线性黏弹性方程 %K Bramble-Hilbert引理 %K 超逼近 %K < %K i> %K H< %K /i> %K < %K sup> %K 1< %K /sup> %K -Galerkin混合有限元方法 %K 半离散和全离散格式 %K < %K br> %K quasi-linear viscoelasticity equation %K < %K i> %K H< %K /i> %K < %K sup> %K 1< %K /sup> %K -Galerkin mixed finite element method %K superclose %K semi-discrete and fully discrete schemes %K Bramble-Hilbert lemma %U http://lxbwk.njournal.sdu.edu.cn/CN/10.6040/j.issn.1671-9352.0.2015.154