|
- 2015
二元三次函数方程的解及在模糊Banach 空间上的稳定性
|
Abstract:
摘要: 设X和Y是实向量空间,映射f:X2→Y称为二元三次函数,?x1,x2,y1,y2∈X,都满足下面的二元三次函数方程: f(2x1+x2,2y1+y2)+f(2x1+x2,2y1-y2)+f(2x1-x2,2y1+y2)+ f(2x1-x2,2y1-y2)=4f(x1+x2,y1+y2)+4f(x1-x2,y1+y2)+24f(x1,y1+y2)+ 4f(x1+x2,y1-y2)+4f(x1-x2,y1-y2)+24f(x1,y1-y2)+24f(x1+x2,y1)+ 24f(x1-x2,y1)+144f(x1,y1). 研究二元三次函数方程解的一般形式,证明了在模糊Banach空间上该方程的Hyers-Ulam稳定性.
Abstract: Let X and Y be real vector spaces. A mapping f:X2→Y is called bi-cubic if it satisfies f(2x1+x2,2y1+y2)+f(2x1+x2,2y1-y2)+f(2x1-x2,2y1+y2)+ f(2x1-x2,2y1-y2)=4f(x1+x2,y1+y2)+4f(x1-x2,y1+y2)+24f(x1,y1+y2)+ 4f(x1+x2,y1-y2)+4f(x1-x2,y1-y2)+24f(x1,y1-y2)+24f(x1+x2,y1)+ 24f(x1-x2,y1)+144f(x1,y1) for all x1,x2,y1,y2∈X. The solution of this equation is obtained and the Hyers-Ulam stability of it is proved on fuzzy Banach spaces
[1] | BRILLOUET BELLOUT N, BRZDEK J, CIEPLINSKI K. On some recent developments in Ulam's type stability[J]. Abstr Appl Anal, 2012,2012:1-41.art. ID 716936.doi:10.1155/2012/716936. |
[2] | JI Peisheng, QI Weiqing, ZHAN Xiaojing. Generalized stability of multi-quadratic mappings[J]. J Math Res & Appl, 2014, 34(2):209-215. |
[3] | 纪培胜,魏然红,刘荣荣. Cauchy-三次函数方程及其Hyers-Ulam稳定性[J]. 数学学报,2014,57(3):559-568. JI Peisheng, WEI Ranhong, LIU Rongrong. Cauchy-cubic functional equation and its Hyers-Ulam stability[J]. Acta Mathematica Sinica, 2014, 57(3):559-568. |
[4] | HYERS D H. On the stability of the linear functional equation[J]. Proc Natl Acad Sci, 1941, 27:222-224. |
[5] | GAVRUTA P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings[J]. J Math Anal Appl, 1994, 184:431-436. |
[6] | ALIREZA K M, MOHAMMAD S M. Fuzzy versions of Hyers-Ulam-Rassias theorem[J]. Fuzzy Sets and Systems, 2008, 159:720-729. |
[7] | BAE J H, PARK W G. On a bi-quadratic functional equation and its stability[J]. Nonlinear Anal, 2005, 62:643-654. |
[8] | CHU H Y, KU S H, PARK J S. Partial stabilities and partial derivations of <em>n</em>-variable functions[J]. Nonlinear Analysis, 2010, 72:1531-1541. |
[9] | BAG T, SAMANTA S K. Finite dimensional fuzzy normed linear spaces[J]. J Fuzzy Math, 2003, 11:687-705. |
[10] | JUN K M, KIM H M. The generalized Hyers-Ulam-Rasias stability of cubic functional equation[J]. J Math Anal Appl, 2002, 274:867-878. |
[11] | LEE J R, JANG S Y, PARK Ch, et al. Fuzzy stability of quadratic functional equations[J]. Adv Difference Equ, 2010, Art.ID 412160. |
[12] | XU Tianzhou. On fuzzy approximately cubic type mapping in fuzzy Banach spaces[J]. Information Sciences, 2014, 278:56-66. |
[13] | XU Tianzhou, RASSIAS J M. Stability of general multi-Euler-Lagrange quadratic functional equations in non-Archimedean fuzzy normed spaces[J]. Advances in Difference Equations, 2012, 2012:119. doi:10.1186/1687-1847-2012-119. |
[14] | GORDJI M E, KHODAEIi H. Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces[J]. Nonlinear Analysis, 2009, 71:5629-5643. |
[15] | CIEPLINSKI K. Generalized stability of multi-additive mappings[J]. App Math Lett, 2010, 23:1291-1294. |
[16] | CIEPLINSKI K. On the generalized Hyers-Ulam stability of multi-quadratic mappings[J]. Computer Math Appl, 2011, 62:3418-3426. |
[17] | ABBAS N, ZAMANI ESKANDANI G. Stability of a mixed additive and cubic functional equation in quasi-Banach spaces[J]. Math Aual Appl, 2008, 342:1318-1331. |
[18] | JUNG S M. Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis[M]. NewYork: Springer, 2011. |
[19] | ULAM S M. A Collection of Mathematical Problems[M]. New York: Wiley, 1960. |
[20] | RASSIAS Th M. On the stability of linear mappings in Banach spaces[J]. Proc Amer Math Soc, 1978, 72:297-300. |