%0 Journal Article %T 二元三次函数方程的解及在模糊Banach 空间上的稳定性<br>General solution and stability of bi-cubic functional equation %A 綦伟青 %A 纪培胜 %A 卢海宁< %A br> %A QI Wei-qing %A JI Pei-sheng %A LU Hai-ning %J 山东大学学报(理学版) %D 2015 %R 10.6040/j.issn.1671-9352.0.2014.349 %X 摘要: 设X和Y是实向量空间,映射f:X2→Y称为二元三次函数,?x1,x2,y1,y2∈X,都满足下面的二元三次函数方程: f(2x1+x2,2y1+y2)+f(2x1+x2,2y1-y2)+f(2x1-x2,2y1+y2)+ f(2x1-x2,2y1-y2)=4f(x1+x2,y1+y2)+4f(x1-x2,y1+y2)+24f(x1,y1+y2)+ 4f(x1+x2,y1-y2)+4f(x1-x2,y1-y2)+24f(x1,y1-y2)+24f(x1+x2,y1)+ 24f(x1-x2,y1)+144f(x1,y1). 研究二元三次函数方程解的一般形式,证明了在模糊Banach空间上该方程的Hyers-Ulam稳定性.<br>Abstract: Let X and Y be real vector spaces. A mapping f:X2→Y is called bi-cubic if it satisfies f(2x1+x2,2y1+y2)+f(2x1+x2,2y1-y2)+f(2x1-x2,2y1+y2)+ f(2x1-x2,2y1-y2)=4f(x1+x2,y1+y2)+4f(x1-x2,y1+y2)+24f(x1,y1+y2)+ 4f(x1+x2,y1-y2)+4f(x1-x2,y1-y2)+24f(x1,y1-y2)+24f(x1+x2,y1)+ 24f(x1-x2,y1)+144f(x1,y1) for all x1,x2,y1,y2∈X. The solution of this equation is obtained and the Hyers-Ulam stability of it is proved on fuzzy Banach spaces %K 二元三次函数方程 %K 三次函数方程 %K Hyers-Ulam稳定性 %K 模糊Banach空间 %K < %K br> %K Hyers-Ulam stability %K cubic functional equation %K bi-cubic functional equation %K fuzzy Banach space %U http://lxbwk.njournal.sdu.edu.cn/CN/10.6040/j.issn.1671-9352.0.2014.349