|
- 2015
奇异φ-Laplacian周期边值问题解的存在性
|
Abstract:
摘要: 考虑了奇异 φ-Laplacian 周期边值问题 解的存在性, 其中 φ:(-a, a)→R是单调递增的同胚且 φ(0)=0, 0< a <+∞, g∈ C(R,R), e∈C[0,T], s 是一个参数.主要结果的证明基于紧集连通理论及Leray-Schauder度理论.
Abstract: We consider the existence of solutions for singular φ-Laplacian of periodic boundary value problems ???20150812-01??? where φ:(-a,a)→R(0< a <+∞) is an increasing homeomorphism such that φ(0)=0, g∈ C(R,R), e∈C[0,T], and s is a parameter. The proof of the main result is based on the continuation theorem and Leray-Schauder degree arguments
[1] | GRENIER W. Classical mechanics-point particles and relativity[M]. Berlin: Springer, 2004. |
[2] | LAZER A C, SOLIMINI S. On periodic solutions of nonlinear differential equations with singularities[J]. Proceedings of the American Mathematical Society, 1987, 99(1):109-114. |
[3] | MANáSEVICH R, MAWHIN J. Boundary value problems for nonlinear peturbations of vector p-Laplacian-like operators[J]. Journal of Korean Mathmatical Society, 2000, 37:665-685. |
[4] | BEREANU C, MAWHIN J. Multiple periodic solutions of ordinary differential equations with bounded nonlinearities and -Laplacian[J]. Nonlinear Differential Equations and Applications, 2008, 15(1-2):159-168. |
[5] | MASSABó I, PEJSACHOWICZ J. On the connectivity properties of the solution set of parametrized families of compact vector fields[J]. Journal of Functional Analysis, 1984, 59(2):151-166. |
[6] | BEREANU C, MAWHIN J. Existence and multiplicity results for some nonlinear problems with singular <em>φ</em>-Laplacian[J]. Journal of Differential Equations, 2007, 243(2):536-557. |
[7] | BEREANU C, MAWHIN J. Boundary-value problems with non-surjective <em>φ</em>-Laplacian and one-sided bounded nonlinearity[J]. Advance in Differential Equations, 2006, 11(1):35-60. |
[8] | BEREANU C, GHEORGHE D, ZAMORA M. Non-resonant boundary value problems with singular <em>φ</em>-Laplacian operators[J]. Nonlinear Differential Equations and Applications, 2013, 20(3):1365-1377. |
[9] | MACCOLL L A. Theory of the relativistic oscillator[J]. American Journal of Physics, 1957, 25(8):535-538. |
[10] | BEREANU C, MAWHIN J. Periodic solutions of nonlinear perturbations of <em>φ</em>-Laplacians with possibly bounded <em>φ</em>[J]. Nonlinear Analysis, 2008, 68(2):1668-1681. |
[11] | MAWHIN J, REBELLO C, ZANOLIN F. Continuation throrems for Ambrosetti-Prodi type periodic problems[J]. Communications in Contemporary Mathematics, 2000, 2(1):87-126. |
[12] | BEREANU C, GHEORGHE D, ZAMORA M. Periodic solutions for singular perturbations of the singular <em>φ</em>-Laplacian operator[J]. Communications in Contemporary Mathematics, 2013, 15(4):1-22. |