%0 Journal Article %T 奇异φ-Laplacian周期边值问题解的存在性<br>Existence of solutions for singular φ-Laplacian of periodic boundary value problems %A 徐嫚 %J 山东大学学报(理学版) %D 2015 %R 10.6040/j.issn.1671-9352.0.2014.485 %X 摘要: 考虑了奇异 φ-Laplacian 周期边值问题 解的存在性, 其中 φ:(-a, a)→R是单调递增的同胚且 φ(0)=0, 0< a <+∞, g∈ C(R,R), e∈C[0,T], s 是一个参数.主要结果的证明基于紧集连通理论及Leray-Schauder度理论.<br>Abstract: We consider the existence of solutions for singular φ-Laplacian of periodic boundary value problems ???20150812-01??? where φ:(-a,a)→R(0< a <+∞) is an increasing homeomorphism such that φ(0)=0, g∈ C(R,R), e∈C[0,T], and s is a parameter. The proof of the main result is based on the continuation theorem and Leray-Schauder degree arguments %K 紧集连通理论 %K Leray-Schauder 度 %K < %K /em> %K -Laplacian %K < %K em> %K &phi %K 周期边值问题 %K < %K br> %K periodic boundary value problems %K continuation theorem %K Leray-Schauder degree %K < %K em> %K φ< %K /em> %K -Laplacian %U http://lxbwk.njournal.sdu.edu.cn/CN/10.6040/j.issn.1671-9352.0.2014.485