|
- 2017
控制数给定的树的最大离心距离和
|
Abstract:
摘要: 图G的离心距离和定义为ξd(G)=∑V∈VGεG(v)DG(v), 其中εG(v)是顶点v的离心率, DG(v)是指在图G中顶点v到其他所有顶点的距离和。 运用结构图论的方法刻画了控制数为4的树的最大离心距离和对应的极图。
Abstract: The eccentric distance sum of graph G is defined as ξd(G)=∑v∈VεG(v)DG(v), where εG(v) is the eccentricity of the vertex v and DG(v) is the sum of all distances from the vertex v. The trees having the maximal eccentric distance sum among n-vertex trees with domination number four are characterized by using the method of structure graph theory
[1] | MIAO L Y, CAO Q Q, CUI N, et al. On the extremal values of the eccentric distance sum of trees[J]. Discrete Applied Mathematics, 2015, 186(29):199-206. |
[2] | LI S C, WU Y Y, SUN L L. On the minimum eccentric distance sum of bipartite graphs with some given parameters[J]. Journal of Mathematical Analysis and Applications, 2015, 430:1149-1162. |
[3] | ORE O. Theory of graphs[M]. Providence: American Mathematical Society, 1962. |
[4] | GUPTA S, SINGH M, MADAN A K. Eccentric distance sum: a novel graph invariant for predicting biological and physical properties[J]. Journal of Mathematical Analysis and Applications, 2002, 275(47):386-401. |
[5] | YU G H, FENG L H, ILIC A. On the eccentric distance sum of trees and unicyclic graphs[J]. Journal of Mathematical Analysis and Applications, 2011, 375(1):99-107. |
[6] | LI S C, ZHANG M, YU G H, et al. On the extremal values of the eccentric distance sum of trees[J]. Journal of Mathematical Analysis and Applications, 2012, 390:99-112. |
[7] | GENG X Y, LI S C, ZHANG M. Extremal values of the eccentric distance sum of trees[J]. Discrete Applied Mathematics, 2013, 161:2427-2439. |
[8] | HUA H B, XU K X, SHU W N. A short and unified proof of Yu et als two results on the eccentric distance sum[J]. Journal of Mathematical Analysis and Applications, 2011, 382:364-366. |
[9] | HUA H B, ZHANG S G, XU K X. Further results on the eccentric distance sum[J]. Discrete Applied Mathematics, 2012, 160:170-180. |
[10] | ILIC A, YU G H, FENG L H. On the eccentric distance sum of graphs[J]. Journal of Mathematical Analysis and Applications, 2011, 381:590-600. |