全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

控制数给定的树的最大离心距离和
On the maximal eccentric distance sum of tree with given domination number

DOI: 10.6040/j.issn.1671-9352.0.2016.113

Keywords: 离心距离和,控制数,叶点,
leavers
,domination number,the eccentric distance sum

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 图G的离心距离和定义为ξd(G)=∑V∈VGεG(v)DG(v), 其中εG(v)是顶点v的离心率, DG(v)是指在图G中顶点v到其他所有顶点的距离和。 运用结构图论的方法刻画了控制数为4的树的最大离心距离和对应的极图。
Abstract: The eccentric distance sum of graph G is defined as ξd(G)=∑v∈VεG(v)DG(v), where εG(v) is the eccentricity of the vertex v and DG(v) is the sum of all distances from the vertex v. The trees having the maximal eccentric distance sum among n-vertex trees with domination number four are characterized by using the method of structure graph theory

References

[1]  MIAO L Y, CAO Q Q, CUI N, et al. On the extremal values of the eccentric distance sum of trees[J]. Discrete Applied Mathematics, 2015, 186(29):199-206.
[2]  LI S C, WU Y Y, SUN L L. On the minimum eccentric distance sum of bipartite graphs with some given parameters[J]. Journal of Mathematical Analysis and Applications, 2015, 430:1149-1162.
[3]  ORE O. Theory of graphs[M]. Providence: American Mathematical Society, 1962.
[4]  GUPTA S, SINGH M, MADAN A K. Eccentric distance sum: a novel graph invariant for predicting biological and physical properties[J]. Journal of Mathematical Analysis and Applications, 2002, 275(47):386-401.
[5]  YU G H, FENG L H, ILIC A. On the eccentric distance sum of trees and unicyclic graphs[J]. Journal of Mathematical Analysis and Applications, 2011, 375(1):99-107.
[6]  LI S C, ZHANG M, YU G H, et al. On the extremal values of the eccentric distance sum of trees[J]. Journal of Mathematical Analysis and Applications, 2012, 390:99-112.
[7]  GENG X Y, LI S C, ZHANG M. Extremal values of the eccentric distance sum of trees[J]. Discrete Applied Mathematics, 2013, 161:2427-2439.
[8]  HUA H B, XU K X, SHU W N. A short and unified proof of Yu et als two results on the eccentric distance sum[J]. Journal of Mathematical Analysis and Applications, 2011, 382:364-366.
[9]  HUA H B, ZHANG S G, XU K X. Further results on the eccentric distance sum[J]. Discrete Applied Mathematics, 2012, 160:170-180.
[10]  ILIC A, YU G H, FENG L H. On the eccentric distance sum of graphs[J]. Journal of Mathematical Analysis and Applications, 2011, 381:590-600.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133