%0 Journal Article %T 控制数给定的树的最大离心距离和<br>On the maximal eccentric distance sum of tree with given domination number %A 朱晓颖 %A 逄世友< %A br> %A ZHU Xiao-ying %A PANG Shi-you %J 山东大学学报(理学版) %D 2017 %R 10.6040/j.issn.1671-9352.0.2016.113 %X 摘要: 图G的离心距离和定义为ξd(G)=∑V∈VGεG(v)DG(v), 其中εG(v)是顶点v的离心率, DG(v)是指在图G中顶点v到其他所有顶点的距离和。 运用结构图论的方法刻画了控制数为4的树的最大离心距离和对应的极图。<br>Abstract: The eccentric distance sum of graph G is defined as ξd(G)=∑v∈VεG(v)DG(v), where εG(v) is the eccentricity of the vertex v and DG(v) is the sum of all distances from the vertex v. The trees having the maximal eccentric distance sum among n-vertex trees with domination number four are characterized by using the method of structure graph theory %K 离心距离和 %K 控制数 %K 叶点 %K < %K br> %K leavers %K domination number %K the eccentric distance sum %U http://lxbwk.njournal.sdu.edu.cn/CN/10.6040/j.issn.1671-9352.0.2016.113