|
- 2017
三角代数上Lie积为平方零元的非线性Jordan可导映射
|
Abstract:
摘要: 设U=Tri(A, M, B )是特征不为 2 的三角代数, Q={u∈U:u2=0}且φ:U→U是一个映射(无可加或线性假设)。 证明了如果对任意a,b∈U且[a,b]∈Q, 有φ(ab)=φ(a)b+aφ(b), 则φ是一个可加导子, 其中[a,b]=ab-ba为Lie积, ab=ab+ba为Jordan积。
Abstract: Let U=Tri(A, M, B )be a 2-torsion free triangular algebra, and Q={u∈U:u2=0}. We prove that if a map φ:U→U satisfies φ(ab)=φ(a)b+aφ(b)for any a,b∈U with [a,b]∈Q, then φ is an additive derivation, where [a,b]=ab-ba is the Lie product and ab=ab+ba is the Jordan product
[1] | Sǒnia P Coelho, Césa Polcino Milies. Derivations of upper triangular matrix rings[J]. Linear and Multilinear Algebra, 1993, 187:263-267. |
[2] | ZHAO Jinping, ZHU Jun. Jordan higher all-derivable points in triangular algerbras[J]. Linear Algebra Appl, 2012, 436(9):3072-3086. |
[3] | ZHANG Jianhua, YU Weiyan. Jordan derivations of triangular algebras[J]. Linear Algebra Appl, 2006, 419(1):251-255. |
[4] | WONG Dein, MA Xiaobin, CHEN Li. Nonlinear mappings on upper triangular matrices derivable at zero point[J]. Linear Algebra Appl, 2015, 483:236-248. |
[5] | WANG Long. Nonlinear mappings on full matrices derivable at zero point[J]. Linear and Multilinear Algebra, 2016, 127:1563-1571. |
[6] | JI Peisheng, LIU Rongrong, ZHAO Yingzi. Nonlinear Lie triple derivations of triangular algebras[J]. Linear and Multilinear Algebra, 2012, 60:1155-1164. |
[7] | JI Peisheng, QI Weiqing. Characterizations of Lie derivations of triangular algebras[J]. Linear Algebra Appl, 2011, 435(5):1137-1146. |
[8] | QI Xiaofei, CUI Jianlian, HOU Jinchuan. Characterizing additive <i>ξ</i>-Lie derivations of prime algebras by <i>ξ</i>-Lie zero products[J]. Linear Algebra Appl, 2011, 434(3):669-682. |
[9] | JONDRUP S. Automorphisms and derivation of upper triangular matrix rings[J]. Linear Algebra Appl, 1995, 221:205-218. |
[10] | 刘丹,张建华. 三角代数上的交换零点Jordan可导映射[J]. 数学学报, 2014, 57(6):1203-1208. LIU Dan, ZHANG Jiahua. Jordan derivable maps on triangular algebras by commutative zero products[J]. Acta Math Sinica, 2014, 57(6):1203-1208. |
[11] | 安润玲,侯晋川.含幂等元的环上的Jordan导子的刻画—在零点Jordan可导的可加映射[J].数学年刊,2010,31(4):463-474. AN Runling, HOU Jinchuan. Characterizations of Jordan derivations on rings with idempotents: additive maps Jordan derivable at zero[J]. Chinese Journal of Contemporary Mathematics, 2010, 31(4):463-474. |
[12] | AN Runling, HOU Jinchuan. Characterizations of derivations on triangular rings: additive maps derivable at idempotents[J]. Linear Algebra Appl, 2009, 431(5-7):1070-1080. |
[13] | LU Fangyan. Jordan derivable maps of prime rings[J]. Comm Algebra, 2010, 38:4430-4440. |
[14] | YU Weiyan, ZHANG Jianhua. Nonlinear *-Lie derivations on factor von Neumann algebras[J]. Linear Algebra Appl, 2012, 437(8):1979-1991. |
[15] | YU Weiyan, ZHANG Jianhua. Nonlinear Lie derivations of triangular algebras[J]. Linear Algebra Appl, 2010, 432(11):2953-2960. |