全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

三角代数上Lie积为平方零元的非线性Jordan可导映射
Nonlinear Jordan derivable maps on triangular algebras by Lie product square zero elements

DOI: 10.6040/j.issn.1671-9352.0.2017.255

Keywords: 三角代数,平方零元,Jordan可导映射,
square zero element
,triangular algebra,Jordan derivable map

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 设U=Tri(A, M, B )是特征不为 2 的三角代数, Q={u∈U:u2=0}且φ:U→U是一个映射(无可加或线性假设)。 证明了如果对任意a,b∈U且[a,b]∈Q, 有φ(ab)=φ(a)b+aφ(b), 则φ是一个可加导子, 其中[a,b]=ab-ba为Lie积, ab=ab+ba为Jordan积。
Abstract: Let U=Tri(A, M, B )be a 2-torsion free triangular algebra, and Q={u∈U:u2=0}. We prove that if a map φ:U→U satisfies φ(ab)=φ(a)b+aφ(b)for any a,b∈U with [a,b]∈Q, then φ is an additive derivation, where [a,b]=ab-ba is the Lie product and ab=ab+ba is the Jordan product

References

[1]  Sǒnia P Coelho, Césa Polcino Milies. Derivations of upper triangular matrix rings[J]. Linear and Multilinear Algebra, 1993, 187:263-267.
[2]  ZHAO Jinping, ZHU Jun. Jordan higher all-derivable points in triangular algerbras[J]. Linear Algebra Appl, 2012, 436(9):3072-3086.
[3]  ZHANG Jianhua, YU Weiyan. Jordan derivations of triangular algebras[J]. Linear Algebra Appl, 2006, 419(1):251-255.
[4]  WONG Dein, MA Xiaobin, CHEN Li. Nonlinear mappings on upper triangular matrices derivable at zero point[J]. Linear Algebra Appl, 2015, 483:236-248.
[5]  WANG Long. Nonlinear mappings on full matrices derivable at zero point[J]. Linear and Multilinear Algebra, 2016, 127:1563-1571.
[6]  JI Peisheng, LIU Rongrong, ZHAO Yingzi. Nonlinear Lie triple derivations of triangular algebras[J]. Linear and Multilinear Algebra, 2012, 60:1155-1164.
[7]  JI Peisheng, QI Weiqing. Characterizations of Lie derivations of triangular algebras[J]. Linear Algebra Appl, 2011, 435(5):1137-1146.
[8]  QI Xiaofei, CUI Jianlian, HOU Jinchuan. Characterizing additive <i>ξ</i>-Lie derivations of prime algebras by <i>ξ</i>-Lie zero products[J]. Linear Algebra Appl, 2011, 434(3):669-682.
[9]  JONDRUP S. Automorphisms and derivation of upper triangular matrix rings[J]. Linear Algebra Appl, 1995, 221:205-218.
[10]  刘丹,张建华. 三角代数上的交换零点Jordan可导映射[J]. 数学学报, 2014, 57(6):1203-1208. LIU Dan, ZHANG Jiahua. Jordan derivable maps on triangular algebras by commutative zero products[J]. Acta Math Sinica, 2014, 57(6):1203-1208.
[11]  安润玲,侯晋川.含幂等元的环上的Jordan导子的刻画—在零点Jordan可导的可加映射[J].数学年刊,2010,31(4):463-474. AN Runling, HOU Jinchuan. Characterizations of Jordan derivations on rings with idempotents: additive maps Jordan derivable at zero[J]. Chinese Journal of Contemporary Mathematics, 2010, 31(4):463-474.
[12]  AN Runling, HOU Jinchuan. Characterizations of derivations on triangular rings: additive maps derivable at idempotents[J]. Linear Algebra Appl, 2009, 431(5-7):1070-1080.
[13]  LU Fangyan. Jordan derivable maps of prime rings[J]. Comm Algebra, 2010, 38:4430-4440.
[14]  YU Weiyan, ZHANG Jianhua. Nonlinear *-Lie derivations on factor von Neumann algebras[J]. Linear Algebra Appl, 2012, 437(8):1979-1991.
[15]  YU Weiyan, ZHANG Jianhua. Nonlinear Lie derivations of triangular algebras[J]. Linear Algebra Appl, 2010, 432(11):2953-2960.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133