%0 Journal Article %T 三角代数上Lie积为平方零元的非线性Jordan可导映射<br>Nonlinear Jordan derivable maps on triangular algebras by Lie product square zero elements %A 武鹂 %A 张建华< %A br> %A WU Li %A ZHANG Jian-hua %J 山东大学学报(理学版) %D 2017 %R 10.6040/j.issn.1671-9352.0.2017.255 %X 摘要: 设U=Tri(A, M, B )是特征不为 2 的三角代数, Q={u∈U:u2=0}且φ:U→U是一个映射(无可加或线性假设)。 证明了如果对任意a,b∈U且[a,b]∈Q, 有φ(ab)=φ(a)b+aφ(b), 则φ是一个可加导子, 其中[a,b]=ab-ba为Lie积, ab=ab+ba为Jordan积。<br>Abstract: Let U=Tri(A, M, B )be a 2-torsion free triangular algebra, and Q={u∈U:u2=0}. We prove that if a map φ:U→U satisfies φ(ab)=φ(a)b+aφ(b)for any a,b∈U with [a,b]∈Q, then φ is an additive derivation, where [a,b]=ab-ba is the Lie product and ab=ab+ba is the Jordan product %K 三角代数 %K 平方零元 %K Jordan可导映射 %K < %K br> %K square zero element %K triangular algebra %K Jordan derivable map %U http://lxbwk.njournal.sdu.edu.cn/CN/10.6040/j.issn.1671-9352.0.2017.255