全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

WOD样本下密度函数核估计的收敛性
Convergence properties of the kernel-type density estimator under WOD dependent samples

DOI: 10.6040/j.issn.1671-9352.0.2016.329

Keywords: WOD样本,密度函数核估计,逐点强相合性,r 阶相合性,
WOD samples
,consistency in r order mean,kernel estimator,pointwise strong consistency

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 设{Xn,n≥1}为同分布的WOD随机序列, f(x)为共同的概率密度函数。利用WOD序列的Rosenthal-型矩不等式和Bernstein-型指数不等式, 对密度函数f(x)的核估计进行了探讨, 在适当条件下得到了核估计的r 阶相合性、逐点强相合性和依概率一致收敛性。
Abstract: Let {Xn,n≥1} be an identically distributed WOD random sequence with a commen density functiong f(x). Based on the Rosenthal-type inequality and Bernstein-type inequality for WOD sequence, the kernel estimator for density function f(x)was investigated under suitable conditions, and the consistency in r order mean, the pointwise strong consistency and uniform consistency in L1 were obtained

References

[1]  韦来生. NA样本概率密度函数核估计的相合性[J]. 系统科学与数学, 2001, 21(1): 79-87. WEI Laisheng. The consistencies for the kernel-type density estimation in the case of NA samples[J]. Journal of System Science and Mathematical Science, 2001, 21(1): 79-87.
[2]  刘永辉,吴群英.ND样本最近邻密度估计的相合性[J].吉林大学学报(理学版), 2012,50(6):1141-1145. LIU Yonghui, WU Qunying. Consistency of nearest neighbor estimator of density function for ND samples[J]. Journal of Jilin University(Science Edition), 2012, 50(6): 1141-1145.
[3]  SHEN Anting. Bernstein-type inequality for widely dependent sequence and its application to non-parametric regression models[J]. Abstract and Applied Analysis, 2013(1): 309-338.
[4]  JOAG-DEV K, PROSCHAN F. Negative association of random variables with applications[J]. Annals of Statistics, 1983, 11: 286-295.
[5]  LIU Li. Precise large deviations for dependent random variables with heavy tails[J]. Statistics and Probability Letters, 2009, 79(9):1290-1298.
[6]  李永明, 应锐, 蔡际盼,等. WOD 样本密度函数和失效率函数递归核估计的逐点强相合性[J]. 吉林大学学报(理学版), 2015, 53(6): 1134-1138. LI Yongming, YING Rui, CAI Jipan, et al. Pointwise strong consistency of recursive kernel estimator for probability density and failure rate funciton under WOD sequence[J]. Journal of Jilin University(Science Edition), 2015, 53(6): 1134-1138.
[7]  WANG Xuejun, XU Chen, HU Tienchung, et al. On complete convergence for widely orthant dependent random variables and its applications in nonparametric regression models[J]. TEST, 2014, 23(3): 607-629.
[8]  CHUNG K L. A course in probability theory[M]. New York: Academic Press, 1974.
[9]  WANG Kaiyong, WANG Yuebao, GAO Qingwu. Uniform asymptotics for the finite-time ruin probability of a new dependent risk model with a constant interest rate[J]. Methodology and Computing in Applied Probability, 2013, 15(1): 109-124.
[10]  ROSENBLATT M. Remarks on some nonparametric estimates of a density function[J]. The Annals of Mathematical Statistics, 1956, 27(3): 832-837.
[11]  PARZEN E. On estimation of a probability density function and mode[J]. The Annals of Mathematical Statistics, 1962, 33: 1065-1076.
[12]  陈希孺, 方兆本, 李国英,等. 非参数统计[M]. 上海:上海科技出版社, 1989. CHEN Xiru, FANG Zhaoben, LI Guoying, et al. Nonparametric statistics[M]. Shang Hai: Shang Hai Science and Technology Press, 1989.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133