%0 Journal Article %T WOD样本下密度函数核估计的收敛性<br>Convergence properties of the kernel-type density estimator under WOD dependent samples %A 胡学平 %A 张红梅< %A br> %A HU Xue-ping %A ZHANG Hong-mei %J 山东大学学报(理学版) %D 2017 %R 10.6040/j.issn.1671-9352.0.2016.329 %X 摘要: 设{Xn,n≥1}为同分布的WOD随机序列, f(x)为共同的概率密度函数。利用WOD序列的Rosenthal-型矩不等式和Bernstein-型指数不等式, 对密度函数f(x)的核估计进行了探讨, 在适当条件下得到了核估计的r 阶相合性、逐点强相合性和依概率一致收敛性。<br>Abstract: Let {Xn,n≥1} be an identically distributed WOD random sequence with a commen density functiong f(x). Based on the Rosenthal-type inequality and Bernstein-type inequality for WOD sequence, the kernel estimator for density function f(x)was investigated under suitable conditions, and the consistency in r order mean, the pointwise strong consistency and uniform consistency in L1 were obtained %K WOD样本< %K i> %K < %K /i> %K 密度函数核估计< %K i> %K < %K /i> %K 逐点强相合性 %K r < %K /i> %K 阶相合性< %K i> %K < %K br> %K WOD samples %K consistency in < %K i> %K r< %K /i> %K order mean %K kernel estimator %K pointwise strong consistency %U http://lxbwk.njournal.sdu.edu.cn/CN/10.6040/j.issn.1671-9352.0.2016.329