|
- 2017
带有导数项的二阶周期问题正解
|
Abstract:
摘要: 获得了非线性函数带有导数项的二阶周期边值问题{u″(t)+au(t)=f(t,u(t),u'(t)),〓t∈[0,1],u(0)=u(1), u'(0)=u'(1)正解的存在性, 其中(π2)/4 π 2, f:[0,1]×R +×R→R +连续。 f(t,x,y)满足 Nagumo条件, 且关于 x 和 y 满足一定的超线性增长条件。针对超线性情形, Nagumo条件关于y严格控制了f的增长。主要结果的证明基于不动点指数理论。
Abstract: This paper shows the existence of positive solutions of the fully second-order periodic boundary value problem {u″(t)+au(t)=f(t,u(t),u'(t)), t∈[0,1],u(0)=u(1), u'(0)=u'(1),where(π2)/4 2, f:[0,1]×R +×R→R + is continuous. f(t,x,y) is superlinear growth on x and y and a Nagumo-type condition is presented. Under the conditions that the superlinear case, the Nagumo-type condition is restrict the growth of f on y. Our discussion is based on the fixed point index theory in cones
[1] | MA Ruyun, LU Yanqiong. Existence of positive periodic solutions for second-order functional differential equations[J]. Monatshefte Für Mathematik, 2014, 173(1):67-81. |
[2] | YAO Qingliu. Positive solutions of nonlinear second-order periodic boundary value problems[J]. Applied Mathematics Letters, 2007, 20:583-590. |
[3] | MA Runyun, CHEN Ruipeng, HE Zhiqian. Positive periodic solutions of second-order differential equations with weak singularities[J]. Advances in Difference Equations, 2014, 232(2012):97-103. |
[4] | JIANG Daqing, CHU Jifeng, ZHANG M R. Multiplicity of positive periodic solutions to superlinear repulsive singular equations[J]. Journal of Differential Equations, 2005, 211:282-302. |
[5] | 徐登洲, 马如云. 线性常微分方程的非线性扰动[M]. 2 版. 北京: 科学出版社, 2008. XU Dengzhou, MA Ruyun. Nonlinear perturbations of linear ordinary differential equations [M]. 2nd ed. Beijing: Science Press, 2008. |
[6] | 马如云. 非线性常微分方程非局部问题 [M]. 北京: 科学出版社, 2004. MA Ruyun. Nonlocal problems of nonlinear ordinary differential equation [M]. Beijing: Science Press, 2004. |
[7] | MA Ruyun, LU Yanqiong, CHEN Tianlan. Existence of one-signed solutions of discrete second-order periodic boundary value problems[J]. Abstract Applied Analysis, 2012, 2012(2):160-176. |
[8] | TORRES P J. Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem[J]. Journal of Differential Equations, 2003, 190:643-662. |
[9] | LIU Xilan, SHI Xiaoyang. Existence of solutions for second-order periodic-integrable boundary value problems[J]. Applied Mathematics Letters, 2014, 37(1):91-94. |
[10] | LI Yongxiang. Positive solutions for second order boundary value problems with derivative terms[J]. Mathematische Nachrichten, 2016, 289(16):2058-2068. |
[11] | MA Ruyun, GAO Chenhua, CHEN Ruipeng. Existence of positive solutions of nonlinear second-order periodic boundary value problems[J]. Boundary Value Problems, 2010(1):1-18. |
[12] | GUO Dajun, LAKSHMIKANTHAM V. Nonlinear problems in abstract cones[M]. New York: Academic Press, 1988. |