%0 Journal Article %T 带有导数项的二阶周期问题正解<br>Positive solutions of a second order periodic problems with derivative terms %A 闫东亮 %J 山东大学学报(理学版) %D 2017 %R 10.6040/j.issn.1671-9352.0.2016.506 %X 摘要: 获得了非线性函数带有导数项的二阶周期边值问题{u″(t)+au(t)=f(t,u(t),u'(t)),〓t∈[0,1],u(0)=u(1), u'(0)=u'(1)正解的存在性, 其中(π2)/4 π 2, f:[0,1]×R +×R→R +连续。 f(t,x,y)满足 Nagumo条件, 且关于 x 和 y 满足一定的超线性增长条件。针对超线性情形, Nagumo条件关于y严格控制了f的增长。主要结果的证明基于不动点指数理论。<br>Abstract: This paper shows the existence of positive solutions of the fully second-order periodic boundary value problem {u″(t)+au(t)=f(t,u(t),u'(t)), t∈[0,1],u(0)=u(1), u'(0)=u'(1),where(π2)/4 2, f:[0,1]×R +×R→R + is continuous. f(t,x,y) is superlinear growth on x and y and a Nagumo-type condition is presented. Under the conditions that the superlinear case, the Nagumo-type condition is restrict the growth of f on y. Our discussion is based on the fixed point index theory in cones %K 正解 %K 不动点指数理论 %K 二阶周期边值问题 %K < %K br> %K positive solution %K fixed point index theory %K second-order boundary value problem %U http://lxbwk.njournal.sdu.edu.cn/CN/10.6040/j.issn.1671-9352.0.2016.506