|
- 2017
具有半对称度量联络的广义Sasakian空间形式中的子流形的Chen-Ricci不等式
|
Abstract:
摘要: 建立了具有半对称度量联络的广义Sasakian空间形式中关于子流形的Chen-Ricci不等式。 这些不等式刻画了子流形关于半对称度量联络的内在不变量(Ricci曲率)、k-Ricci曲率与外在不变量(平均曲率平方‖H‖2)之间的关系。
Abstract: We establish Chen-Ricci inequalities for submanifolds of generalized Sasakian space forms endowed with a semi-symmetric metric connection. These inequalities give relationships between the squared mean curvature and certain intrinsic invariants involving the Ricci curvature and the k-Ricci curvature with respect to the induced semi-symmetric metric connection of submanifolds
[1] | HAYDAN H A. Subspaces of a space with torsion[J]. Proc London Math Soc, 1932, 34:7-50. |
[2] | YANO K. On semi-symmetric metric connection[J]. Rev Roumaine Math Pures Appl, 1970, 15:1579-1586. |
[3] | NAKAO Z. Submanifolds of a Riemanian with semi-symmetric metric connections[J]. Proc Amer Math Soc, 1976, 54:261-266. |
[4] | CHEN B Y. Some pinching and classification theorems for minimal submanifolds[J]. Arch Math, 1993, 60(6):568-578. |
[5] | ALEGRE P, CARRIAZO A, KIM Y H, et al. Chens inequality for submanifolds of generalized space forms[J]. Indian J Pure Appl Math, 2007, 38:185-201. |
[6] | TRIPATHI M M. Chen-Ricci inequality for submanifolds of contact metric manifolds[J]. Journal of Advanced Mathematical Studies, 2008, 1(1-2):111-135. |
[7] | ?ZGüR C. B. Y. Chen inequalities for submanifolds a Riemannian manifold of a quasi-constant curvature[J]. Turk J Math, 2011, 35:501-509. |
[8] | CHEN B Y. <i>δ</i>-invariants, inequalities of submanifolds and their applications[C] // MIHAI A, MIHAI I, MIRON R. Topics in Differential Geometry. Bucharest: Editura Academeiei Romane, 2008. |
[9] | MIHAI A, ?ZGüR C. Chen inequalities for submanifolds of real space forms with a semi-symmetric metric connection[J]. Taiwanese J Math, 2010, 14(4):1465-1477. |
[10] | MIHAI I. Ricci curvature of submanifolds in Sasakian space forms[J]. J Aust Math Soc, 2002, 72(2):247-256. |
[11] | MIHAI A, ?ZGüR C. Chen inequalities for submanifolds of complex space forms and Sasakian space forms endowed with semi-symmetric metric connections[J]. Rocky Mountain J Math, 2011, 5(41):1653-1673. |
[12] | ZHANG Pan, ZHANG Liang, SONG Weidong. Chens inequalities for submanifolds of a Riemannian manifold of quasi-constant curvature with a semi-symmetric metric connection[J]. Taiwanese J Math, 2014, 18(6):1841-1862. |
[13] | BLAIR D E. Riemannian geometry of contact and symplectic manifolds[M]. Boston: Birkhauser, 2002. |
[14] | ALGEGRE P, BLAIR D E, CARRIAZO A. Generalized Sasakian space forms[J]. Israel J Math, 2004, 141:157-183. |
[15] | CHEN B Y. Pseudo-Riemannian geometry, <i>δ</i>-invariants and applications[M]. New Jersey: World Scientic, 2011. |
[16] | CHEN B Y. Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions[J]. Glasgow Math J, 1999, 41(1):33-41. |
[17] | CHEN B Y. On Ricci curvature of isotropic and Langrangian submanifolds in complex space forms[J]. Arch Math(Basel), 2000, 74:154-160. |
[18] | MATSUMOTO K, MIHAI I, OIAGA A. Ricci curvature of submanifolds in complex space forms[J]. Rev Roumaine Math Pures Appl, 2001, 46:775-782. |